

About the Authors
Tony Snake was received Bachelor of Computer Science from the American
University, and Bachelor of Business Administration from the American
University, USA.

He is becoming Ph. Candidate of Department of Data Informatics, (National)
Korea Maritime and Ocean University, Busan 49112, Republic of Korea
(South Korea).

His research interests are social network analysis, big data, AI and robotics.

He received Best Paper Award the 15th International Conference on
Multimedia Information Technology and Applications (MITA 2019)

Table of Contents
Contents
About the Authors 1
He received Best Paper Award the 15th International Conference on Multimedia Information
Technology and Applications (MITA 2019) 1
Table of Contents 2
Chapter 1: Python File Handling 2
1. Opening and Closing Files in Python 2

What is File Handling in Python? 2
Why file handling? 2
Opening and Closing a File in Python 2

open() Function: 2
Example of Opening and Closing Files in Python 3

close() function: 3
Example with with statement: 3
Explanation 4

2. How to Read a File in Python 5
Introduction 5
File Access Modes 5
Reading a File in Python 6
Opening a File in Python 6

Usage: 6
Closing a File in Python 7

Usage: 7
1. The read() method in python: 7
2. The readline() method in python: 8

Usage: 8
3. The readlines() method in python: 9

Usage: 9
Reading a Binary File in Python 9

Example: 9
Reading Using the with open() Method in Python 10

Syntax: 10
3. How to Write a File in Python 10

Writing to a text file in Python 10
1. The write() function in Python: 10
Output 11

2. The writelines() function in Python: 12
Writing to a binary file in Python 12

Example 12
4. How to Delete File in Python? 12

Introduction 12
How to Delete Files Using Python? 13
1. Using the os module in python 13
2. Using the shutil module in python: 13
3. Using the Pathlib Module in Python 14

5. With Statement in Python 15
What is “with” Statement in Python 15

Wait… What is a buffer? 15
Try…Finally in Python 15
With in Python 15

But how does “with” know to close a file? 16
Using “with” in user-defined objects 16

Wait… Why would I use “with” in my custom function? 16
Output: 17

Contextlib Library 18
Output: 18

Chapter 2: Python Exception Handling 18
1. Exception Handling in Python 18

Introduction 18
What is Exception Handling in Python? 19
Common Exceptions in Python 20
Catching Specific Exceptions in Python 21
Raising Custom Exceptions 22

Syntax to Raise an Exception 22
try except and ELSE! 23

Syntax With Else Clause 23
Try Clause with Finally 24
Why Use Finally or Else in try..except? 26
What Happens if Errors are Raised in Except or Finally Block? 26

2. Assert Keyword in Python 27
Introduction to Assert in Python 27
What is Assert? 28
Why Use Assert in Python? 28
Python Assert Statement 28
What Does the Assertion Error do to our Code? 30

Where is Assertion used in Python? 31
1. Checking parameter types / classes / values 31
2. Checking “can’t happen” situations 31
3. Documentation of Understanding 32
Another Example of Assertion in Python 32

Chapter 3: Python Object & Class 33
1. Python Object Oriented Programming 33

Object Oriented Programming 33
Class 34
Object 34

Example 1: Creating Class and Object in Python 35
Methods 36

Example 2 : Creating Methods in Python 36
Inheritance 37

Example 3: Use of Inheritance in Python 37
Encapsulation 38

Example 4: Data Encapsulation in Python 38
Polymorphism 39

Example 5: Using Polymorphism in Python 40
2. Python Objects and Classes 41

Python Objects and Classes 41
Defining a Class in Python 41
Creating an Object in Python 43
Constructors in Python 44
Deleting Attributes and Objects 46

3. Python Inheritance 47
Inheritance in Python 47

Python Inheritance Syntax 47
Example of Inheritance in Python 48

Method Overriding in Python 50
4. Python Multiple Inheritance 51

Python Multiple Inheritance 51
Example 51

Python Multilevel Inheritance 52
Method Resolution Order in Python 52

5. Python Operator Overloading 54
Python Operator Overloading 54
Python Special Functions 55
Overloading the + Operator 57

Overloading Comparison Operators 60
Chapter 4: Python Advance Constructs 62
1. Python Modules 62

What are Modules in Python? 62
Formal Definition of Python Module 62
Features of Python Module 62

Types of Python Modules 63
InBuilt Module: 63
How to call a Built-In module?** 63

Variables in Module 64
The Import Statement 65

What is an Import Statement? 65
How to Use Import Modules 65

Using from <module_name> import statement 66
Python Module Search Path 67
Naming a Module 67
Re-Naming a Module 68
Reloading a Module 68
The dir() built-in Function 68

2. Packages in Python and Import Statement 69
Introduction 69
Importing Module From a Package in Python 69

Syntax: 70
Installing a Python Package Globally 70
Import Statement in Python 71

Output: 72
Example: 72
Output: 72

Importing Attributes Using the from Import Statement in Python 72
Syntax: 72
Output: 72
Output: 73

Importing Modules Using the From Import * Statement in Python 73
Syntax: 73
Example: 73
Output: 73

Importing Modules in Python Using the Import as Statement 73
Syntax: 73
Example: 73

Output: 74
Importing Class/Functions from Module in Python 74

Output: 74
Import User-defined Module in Python 74
Output: 74

Importing from Another Directory in Python 75
Output: 76

Importing Class from Another File in Python 76
Output: 77

3. Python Collection Module 77
Introduction to Modules 77
Collection Module 78

namedtuple() 78
OrderedDict() 80
defaultdict() 82
Counter() 84
deque() 85
Chainmap 87

4. Regular Expression in Python 89
RegEx Module 90
Python RegEx Expressions Functions 90
Meta Characters 90
Special Sequences in Python RegEx 91

Examples for each sequence are given below 91
Sets 92
findall(pattern, string) 93
search(pattern, string) 93
split(pattern, string) 94
sub(pattern, repl, string) 94
Match Object 94

5. Python Datetime 96
Introduction to Python Datetime 96
How to Use Date and Datetime Class? 97
Classes of DateTime Python Module 98

Date 98
Time 99
Points to Remember About Time Class 99

Datetime 100
Timedelta 101

Tzinfo 102
Naive & Aware Datetime Objects 102
Timezone 103
Basics of pytz Library 103

Date Class 104
.date() 104
.today() 105
.min 105
.max 105
.day 106
.month 106
.year 106

strftime() 107
Current Date 108

.today() 108

.now() 108
Use of datetime.strptime() 109
How to Get Current timeStamp? 109
How to Know the Day of the Given Date? 110
Generate a List of Dates from a Given Date 111

Algorithm 111
Applications Of Python DateTime Module 112

Chapter 5: Python Advanced Topics 113
1. Python Iterators 113

Iterators in Python 113
Iterating Through an Iterator 113
Working of for loop for Iterators 115
Building Custom Iterators 116
Python Infinite Iterators 117

2. Python Generators 119
Generators in Python 119
Create Generators in Python 120
Differences between Generator function and Normal function 120
Python Generators with a Loop 123
Python Generator Expression 124
Use of Python Generators 126

1. Easy to Implement 126
2. Memory Efficient 127
3. Represent Infinite Stream 127

4. Pipelining Generators 127
3. Python Closures 128

Nonlocal variable in a nested function 128
Defining a Closure Function 129
When do we have closures? 131
When to use closures? 131

3. Python Decorators 133
Decorators in Python 133
Prerequisites for learning decorators 133
Getting back to Decorators 136
Decorating Functions with Parameters 137
Chaining Decorators in Python 139

4. Python @property decorator 141
Class Without Getters and Setters 142
Using Getters and Setters 143
The property Class 146
The @property Decorator 149

5. Python Regular Expressions 151
Python RegEx 151
re.findall() 152

Example 1: re.findall() 152
re.split() 152

Example 2: re.split() 152
re.sub() 153

Example 3: re.sub() 153
re.subn() 154

Example 4: re.subn() 155
re.search() 155

Example 5: re.search() 155
Match object 156

match.group() 156
Example 6: Match object 156
match.start(), match.end() and match.span() 157
match.re and match.string 158
Using r prefix before RegEx 158
Example 7: Raw string using r prefix 158

Chapter 6: Error Handling 159
1. Python Error and In-built Exception in Python 159

Python: Syntax Error 159

Python: What is an Exception? 160
Decoding the Exception Message in Python 161

2. Python Exception Handling 161
Handling Exceptions using try and except 162

The try block 163
The except block 163
Code Execution continues after except block 163

Catching Multiple Exceptions in Python 164
Multiple except blocks 165
Handling Multiple Exceptions with on except block 165
Generic except block to Handle unknown Exceptions 166

3. Exeption Handling: Finally 167
finally block with/without Exception Handling 167
Exception in except block 168

4. Python Exception Handling: raise Keyword 169
raise Without Specifying Exception Class 171
raise With an Argument 172

Chapter 7: Multithreading 172
1. Introduction to Multithreading In Python 172

Threads 172
Types Of Thread 173

What is Multithreading? 173
Time for an Example 173

Multithreading in Python 174
2. Threading Module In Python 175

threading Module Functions 175
threading.active_count() Function 175
threading.current_thread() 176
threading.get_ident() 178
threading.enumerate() 178
threading.main_thread() 178
threading.settrace(fun) 179
threading.setprofile(fun) 179
threading.stack_size([size]) 179
threading.TIMEOUT_MAX 180

threading Module Objects 180
3. Thread class and its Object - Python Multithreading 180

How Thread works? 181
Functions and Constructor in the Thread class 181

Thread class Constructor 182
start() method 182
run() method 182
join([timeout]) method 183
getName() method 183
setName(name) method 183
isAlive() method 183
isDaemon() method 183
setDaemon(daemonic) method 183

4. Thread Synchronization using Event Object 184
Python Multithreading: Event Object 184

Initialize Event object 184
isSet() method 185
set() method 185
clear() method 185
wait([timeout]) method 185

Time for an Example 186
5. Timer Object - Python Multithreading 186

Syntax for creating Timer object 187
Methods of Timer class 187

start() method 187
cancel() method 187

Time for an Example 187
6. Condition Object - Thread Synchronization in Python 188

Condition object: wait(), notify() and notifyAll() 189
Condition class methods 189

acquire(*args) method 189
release() method 189
wait([timeout]) method 189
notify() method 190
notifyAll() method 190

Time for an Example! 190
7. Barrier Object - Python Multithreading 190

Functions provided by Barrier class 191
wait(timeout=None) method 191
reset() method 192
abort() method 192
parties 192
n_waiting 192

broken 193
Time for an Example! 193

Chapter 8: Python Logging 193
1. Python Logging Basic Configurations 193

Let's take an Example 194
Points to remember: 194

Store Logs in File 194
Set Format of Logs 195

Add process ID to logs with loglevel and message 195
Add Timestamp to logs with log message 195
Use the datefmt attribute 196

2. Python - Print Logs in a File 197
Python Logging - Store Logs in a File 197

3. Python Logging Variable Data 199
Example 199
There is Another way 200

4. Python Logging Classes and Functions 200
1. Logger class 201
2. LogRecord 201
3. Handler 201
4. Formatter 201
Several Logger objects 201

Chapter 9: Python With MySQL 203
1. MySQL with Python 203

Python MySQL - Prerequisites 203
What is MySQL? 204

MySQL Connector 204
Test the MySQL Connector 205
Creating the Connection 205

2. Python MySQL - Create Database 206
Python MySQL - CREATE DATABASE 206

Python MySQL - Create Database Example 206
Python MySQL - List all Database 207

3. Python MySQL - Create and List Table 209
Python MySQL - Create Table 209

SQL Query to Create Table 210
List existing Tables in a Database 211
Python MySQL - Table with Primary Key 212

What is Primary Key? 212

Add Primary Key during Table creation 213
Python MySQL - Describe the Table 214
Add Primary Key to Existing Table 215

4. Python MySQL - Insert data in Table 216
Python MySQL - INSERT Data 216
Inserting Single Row in MySQL Table 217
Inserting Multiple Rows in MySQL Table 218

5. Python MySQL - Select data from Table 220
Python MySQL - SELECT Data 220
Retrieve All records from MySQL Table 220
Retrieve data from specific Column(s) of a Table 222

Selecting Multiple columns from a Table 223
To fetch the first record - fetchone() 225

6. Python MySQL - Update Table data 226
Python MySQL UPDATE: Syntax 226

Python MySQL UPDATE Table Data: Example 226
7. Python MySQL - Delete Table Data 229

Python MySQL DELETE: Syntax 229
Python MySQL DELETE Table Data: Example 229

8. Python MySQL - Drop Table 232
Python MySQL DROP TABLE: Example 232
Python MySQL - Drop Table if it exists 233

9. Python MySQL - WHERE Clause 235
Python MySQL WHERE Clause 235
Using WHERE Clause 235

10. Python MySQL - Orderby Clause 237
Python MySQL ORDER BY Example 237
Python MySQL ORDER BY DESC 239

11. Python MySQL - Limit Clause 241
Python MySQL LIMIT: Example 242
Using OFFSET Keyword with LIMIT clause 243

12. Python MySQL - Table Joins 244
Python MySQL - Joining two tables 245
Python MySQL - Left Join 247
Python MySQL - Right Join 249

Conclusion 251

Python for Advance: 3 Days with
Python

Chapter 1: Python File Handling

1. Opening and Closing Files in
Python
What is File Handling in Python?
Suppose you are working on a file saved in your personal computer, if you
want to perform any operating on that file like opening it, updating it or any
other operation on that, that all thing come under File handling. So, File
handling in computer science means working with files stored on the disk.
This includes creating, deleting, opening or closing files and writing, reading
or modifying data stored in those files.

Why file handling?
In computer science we have programs that do all the work. A program may
require data to be read from the disk and store results on the disk for future
usage. This is why we need file handling. For ex: If you need to analyse,
process and store data from a website then you first need to scrap(this means
getting all the data shown on a web page like text and images) the data and
store it on your disk and then load this data and do the analysis and then store
the processed data on the disk in a file. This is done because scraping data
from a website each time you need it is not desirable as it will take a lot of
time.

Opening and Closing a File in Python
In file handling we have two types of files, one is text files and other is binary
files. We can open files in python using open function, let's discuss about it.

open() Function:
This function takes two arguments. First is the filename along with its
complete path and the other is access mode. This function returns a file
object.

Sr.
No Modes Description

1. r Opens a file in read only mode. The pointer of the file is at the beginning of the file. This is also the default
mode.

2. rb Same as r mode except this opens the file in binary mode.
3. r+ Opens the file for both reading and writing. The pointer is at the beginning of the file.
4. rb+ Same as r+ mode except this opens the file in binary mode.
5. w Opens the file for writing. Overwrites the existing file and in file is not present then creates a new one.
6. wb Same as w mode except this opens the file in binary format.
7. w+ Opens the file for both reading and writing, Rest is the same as w mode.
8. wb+ Same as w+ except this opens the file in binary format.

9. a Opens the file for appending. If the file is present then the pointer is at the end of the file else it creates a new
file for writing.

10. ab Same as a mode except this opens the file in binary format.

11. a+ Opens the file for appending and reading. The file pointer is at the end of the file if the file exists else creates
a new file for reading and writing.

12. ab+ Same as a+ mode except this opens the file in binary format.

Syntax:
open(filename, mode)

Important points:
The file and python script should be in the same directory else you need
to provide the full path of the file.
By default the access mode is read mode, if you don't specify any
mode. All the file opening access modes are described below.

Access mode tells the type of operations possible in the opened file. There
are various modes in which we can open a

Example of Opening and Closing Files in Python
When the file is in the same folder where the python script is present. Also access mode is 'r' which
is read mode.
file = open('test.txt',mode='r')

When the file is not in the same folder where the python script is present.In this case whole path of
file should be written.
file = open('D:/data/test.txt',mode='r')

It is general practice to close an opened file as closed file reduces the risk of
being unwarrantedly updated or read. We can close files in python using
close function. Let's discuss about it.
close() function:

This function don't take any argument and you can directly call close function
using file object. It can be call multiple times but if any operation is
performed on closed file, "ValueError" exception is raised.
Syntax:
file.**close()**

PS: You can use 'with' statement with open also as it provides
better exception handling and simplifies it with by providing some cleanup
tasks. Also it will automatically close the file and you don't have to do it
manually.
Example with with statement:
with open("test.txt", mode='r') as f:
 # perform file operations

The method shown in the above section is not entirely safe. If some exception
occurs while opening the file then the code will exit without closing the file.
A more safer way is to use try-finally block while opening files.
try:
 file = open('test.txt',mode='r')
 # Perform file handling operations
finally:
 file.close()

Now this guarantees that the file will close even if an exception occurs while
opening the file. So, you can also use the ‘with’ statement method instead of
this. Any of the two methods is good.
Now we will see some examples on how to open and close files in python in
various modes. Below is an example of a few important modes for rest you
can try yourself.
The file that I will be using contains the following content.

Now we will perform some operations on the file and print the content of the
file after each operation to get a better understanding how this works. The
example is given below. Both the file and the python script should be in the
same folder.
Opening file in read mode and printing the contents of the file.
with open("test.txt", mode='r') as f:
 data = f.readlines() #This reads all the lines from the file in a list.
 print(data) #This will print content of file that is Hello World!

Opening a file in write mode.

with open("test.txt", mode='w') as f:
 f.write("Data after write operation")
Opening file in read mode to check the contents.
with open("test.txt", mode='r') as f:
 data = f.readlines() # this reads all the lines from the file in a list.
 print(data) #this will print the overwritten content of file that is "Data after write operation"

Opening a file in append mode and appending data to the file.
with open("test.txt", "a") as f:
 f.write(" Appending new data to the file")
Opening file in read mode to check the contents.
with open("test.txt", mode='r') as f:
 data = f.readlines() #This reads all the lines from the file in a list.
 print(data) #this will print the existing content of file plus the appended content

Explanation
In above example firstly test.txt file was opened in read(r) mode to read its
content and that file data will be printed and after that file was opened
with write(w) mode, so it will overwrite all the content of that file and new
data will be written to that file. After that file was opened in append(a) mode,
so new data will be appended to existing data of file, will not be overwritten.
I have covered just three most important modes of file handling. You can try
some other modes.on your own.

2. How to Read a File in Python
Introduction
Before we read files using python, we should first define files. To store any
data, we use a contiguous set of bytes called a file. A file could be as simple
as a text or an executable file. These file bytes are always converted to binary
(0 and 1) format for processing by the computer.
Here are some types of files that Python can handle

1. Text files
2. Binary files

Other files that python can handle include csv files, excel sheets etc. But in
this article, we will focus on the text and binary files.
What is the difference between the two files? In the text file, each line is
terminated using a newline character \n. In contrast, a binary file does not

have any such terminator, and the data of the file can be stored after
converting the binary file into binary language that the machine can
understand.
We can now move on to reading files with the help of python.

File Access Modes
When you open a file, you want to perform an operation on it. So depending
on the type of operations you’d like to perform, you select an access mode in
which you can open the file.
Typically, there are six access modes:

1. Read-only (‘r’): Denoted by r, this is the default mode for opening a file. If the file you wish to
access does not exist, it raises an I/O error. With this access mode, you can only read a
particular file.

2. Write only (‘w’): This is the access mode that you use when you want to write in a file that
you’d like to open. Note, that in this mode, if your file already exists, then whatever you wish
to write into your file, will get written, but will delete all the initial contents of the file. When a
file does not exist, a new file will be created.

3. Append (‘a’): The append access mode allows you to write to opened files. Then what’s the
difference between the append and write mode? Well, in the append mode, the initial contents
of the file are not deleted. Whatever you wish to write in the file will be written after the initial
contents of the file.

4. Read and Write (‘r+’): This mode allows you to read and write to a file. The handle is initially
positioned at the beginning of the file. If the file does not exist, a file not found error is raised.

5. Write and Read (‘w+’): You might be wondering the difference between read and write mode
and this mode. Since this mode is an extension of the write mode, whatever you write into the
file will be written after the truncation of existing contents.

6. Append and Read (‘a+’): As the name suggests, you can read and append to a file in this
access mode. Any data you wish to add will be added after the existing data.

Reading a File in Python
Now that we know the modes in which we can access a file, let’s get down to
reading from it. But wait, before reading it, we must first know how to open a
file. And here is where we will be using our access modes.

Opening a File in Python
To open any existing or non-existing file, we use the built-in open() function.
One thing to note here is that whether you’re opening an existing file or you
want to open a non-existing file (by creating it) depends on your access
mode.

The access modes that help create a new file if it does not exist are –
 w, w+, a, a+
Let’s see how we can use the open function to open an existing or non-
existing file.
The syntax of the function is:
file_object = open(r"file_name", "access_mode")

The 'r' just before the parameters is to prevent the characters in the file name
from being treated as special characters. For example, if we have "\tapes" in
the file address, then "\t" could be treated as the tab character, and an error
would be raised. The 'r' represents raw, meaning the string does not contain
special characters.
The open function gives us a file object on which we can perform operations.
The parameters of the open function are the file name and the access mode in
which you wish to open the file. In place of the file name, if the file isn’t in
the same directory as the program, we can add the complete file path.
Usage:
file1 = open("example.txt", "a+")
file2 = open("E:\\tests\file.txt", "w+")

Now, if you open a file, you must also close it.
Another important thing to note here is that when dealing with text files, it is
recommended that you also specify its encoding as follows:
file1 = open("example.txt", "a+", encoding="utf-8")

Closing a File in Python
To close a file, we use the built-in function close(). This function closes the
file and frees the memory space that was acquired by that file. You can use
the close function if you no longer need the file or if it is required in another
access mode.
Usage:
file1 = open("example.txt", "w+", encoding="utf-8")
do something
file1.close()

That’s it!
To guarantee that the file closes, even if some exceptions are raised during
file handling, a better way is to use the try … finally block. Any code in the
try block is executed first. If any error is raised, it immediately stops

executing the try block code and moves to the final block.
try:
 file_obj = open("example.txt", "r", encoding="utf-8")
 # do something with the file
finally:
 file_obj.close()

Now let’s get back to business. How do we read from the file?
Naturally, if you need to read from a file in python, you would use
the r mode.
To read data from a text file in python, you have 3 possible methods:

1. The read() method in python:
The read method returns a string that contains all the characters of the file
mentioned. There are no mandatory parameters to this function, but if you
want to read a certain number of characters from the file, you can specify
them as a parameter.
Now say the file example.txt has the following contents:
Hello World
I've learnt how to use the readline() function
To read all characters:
file_obj = open("example.txt", "r", encoding="utf-8")
print(file_obj.read())
file_obj.close()

To read the first 5 characters:
file_obj = open("example.txt", "r", encoding="utf-8")
print(file_obj.read(5))
file_obj.close()

What if you wanted to read five characters but not from the current position?
You want to skip the first 12 characters and print the following 5. How would
you do that?
Python has a function that gives you the cursor’s current position while
handling a file. And you can also ‘seek’ a certain position in the file.
file_obj.tell() # will give you current cursor position
file_obj.seek(n) # will seek the nth position

The read() function only allows you to either read the file's entire contents or
a certain number of specified characters. What if you wanted to read the first
line or the third?

2. The readline() method in python:
The readline() function helps you read a single line from the file. You can run
this function as often as you require to get the information. Every time you
run the function, it returns a string of the characters that it reads from a single
line from the file.
If you specify an n in the parameters, it reads n number of characters from
that line in the file. If n exceeds the number of characters in the file, the
method returns the line without reading the following line.
Usage:
Let’s assume the contents of the file are:
Hello World
I've learnt how to use the readline() function
Code to open:
file_obj = open("example.txt", "r", encoding="utf-8")
print(file_obj.readline())
file_obj.close()

3. The readlines() method in python:
As the name suggests, the readlines() method reads all the lines in the file and
returns them properly separated in a list.
Usage:
file_obj = open("example.txt", "r", encoding="utf-8")
print(file_obj.readlines())
file_obj.close()

Most of the time, you will not be using functions just like this. You might
want to loop over the lines for some data you want to extract, etc. A more
memory-efficient and fast way to do so is given below.
The contents of our new file are now:
This is a new file.
We have now learnt all read functions.
We are trying a new method
to loop over files.
The code to access the above contents of a file is:
file_obj = open("example.txt", "r")
for line in file_obj:
 print(line)

file_obj.close()

Reading a Binary File in Python
In the beginning of this article, we discussed two file types. In all the above
examples, we’ve seen how to read a text file in python. All the access modes,
too, were only for text files. What about binary files?
To read/write to binary files, we have special access modes: ' rbandwb. Of
course, rbis for reading andwb` for writing.
It is important to note here that the return type of any operations on binary
files with these access modes will be in the form of byte strings and not text
strings like in text files. Similarly, when you’re writing to files, the format
must also be binary.
Example:
file_obj = open("binary.txt", "rb")
some code
file_obj.close()
All the functions we discussed above are applicable on the binary files as well.

Reading Using the with open() Method in Python
Now in all the above examples, you must have noticed that we first open the
file, and then close it after we’ve used it. There is another way of opening
files that has a much cleaner syntax and provides better exception handling.
The bonus here is that you don’t have to close the file after the operations you
perform on it.
It is the with open() method.
Syntax:
with open("file_name") as f:
 data = f.read()
 # do something with this data

Did you notice that we did not close the file here?
Here, you open the file as f, which means that f here is the file object on
which you can do operations.
You now know all you need for read files using python! So, now you can
start with reading files using python.

3. How to Write a File in Python
Writing to a text file in Python
We have various access modes to open an existing text file in Pyhton and to
write to it, depending on what we need. Even if the text file does not already
exist, we can use the w or the a access mode to create a text file and then
write to it. There are two functions in Python that help us write into text files:

1. The write() function in Python:
Whatever strings you give as a parameter to this function, it writes it as a
single line in the text file. Now again, whether or not the existing contents
will be truncated depends on the access mode. If you use the w mode, the
contents will be truncated, and your string will be written. However, in
the a mode, your existing contents will not be deleted, and your string will be
written after the contents.
Now let's take a look at an example. We initially do not have any existing file
with the name of writing.txt. We're creating it using the w mode. Once we
open the new file, it's obviously empty. We're then going to write content into
it.
file_obj = open("writing.txt", "w")

Here, file_obj is the file object. We're opening a file named writing.txt in
the w access mode. If this file does not exist, since we have used the w access
mode, it will be created.
We can now write into it like this:
file_obj.write("This is how you write to a file")
file_obj.write("Now this will be written to another line")

Since we used the open() method to open the file, instead of with open(), we
need to close the file as well.
Let’s see what our file looks like now with the below program.
{"output":"This is how you write to a file /n
Now this will be written to another line "}
print(file_obj.read())
file_obj.close()

The non-existent file now has above two lines of content in it. Let's try
writing to the file again, just another line. Since we closed the file earlier, we
need to open it again.

file = open("writing.txt", "w")

Note how we used the w access mode. The file writing.txt currently exists.
The previous time we used the open function to open the file, it did not exist.
We created it and then opened it. This time, it just opens in writing mode
since it already exists.
file.write("Where do you think this will be written in the file?")
file.write("Obviously, the initial contents will be overwritten with these two lines")
print(file.read())
file.close()

Once you run this code, you see the below file contents:
Where do you think this will be written in the file?
Obviously, the initial contents will be overwritten with these two lines.

To keep the initial contents of the file, you will have to use the append (a)
access mode. Since you will change the access mode, you need to re-open the
file in that mode after closing it.
file = open("writing.txt", "a")
file.write("This way, I will preserve the existing contents in the file")
print(file.read())
file.close()

Output
Where do you think this will be written in the file?
Obviously, the initial contents will be overwritten with these two lines
This way, it will preserve the existing contents in the file

2. The writelines() function in Python:
Constantly using file.write() for every line that we want to write to your file
can get difficult. Hence, we can use the writelines() function.
A simple way to use it, is to provide a list of strings as a parameter
to writelines().
lines = ["line1", "line2", "line3"]
file_obj.writelines(lines)

Note that if you open a file with w or a access mode, you can only write to
the file and not read from it. In the same way, if you open a file in the r mode,
you can only read from it and not write. If you wish to perform both
operations simultaneously, you should use the a+ mode.

Writing to a binary file in Python
After learning how to read data from a binary file, I'm sure you know how to
write to it too. We use the wb mode to write to a binary file.

Example
f = open("binfile.bin", "wb")
nums = [1, 2, 3, 4, 5]
arr = bytearray(nums)
f.write(arr)
f.close()

Obviously, binary data is not human recognizable. So when we have to write
an array of numbers like 1, 2, 3, 4, and 5, we need to first convert them into a
byte representation to store it in the binary file. For that purpose, we use the
built-in bytearray() function.

4. How to Delete File in Python?
Introduction
Sometimes after you’ve worked with your file and do not require it anymore,
you can delete it using python. Say, in an extensive program, you needed to
create files to store data but did not require them after the program's
execution. It’s a good idea to delete those files, and we’ll see how to do that
using python in this article.

How to Delete Files Using Python?
Removing the files or a single file from a particular directory when it is no
longer required is the basic concept of deleting a file. Now to remove a file,
you have three methods. Using one of the modules:

1. os
2. shutil
3. pathlib

1. Using the os module in python
The os module allows you to use the operating system-dependent
functionalities.
To use the os module to delete a file, we first need to import it, then use
the remove() function provided by the module to delete the file. It takes the
file path as a parameter.
You can not just delete a file but also a directory using the os module.
To delete a file:

import os
file_path = <file_path>
if os.path.isfile(file_path):
 os.remove(file_path)
 print("File has been deleted")
else:
 print("File does not exist")

In this piece of code, we’re first importing the os module and then storing the
complete file path of the file we wish to delete in a variable called file_path.
We then check if the file exists at that path, then we remove the file, and if it
doesn’t exist, then we do nothing.
On the other hand, if you wish to delete or clear a directory, you can do it
with the help of the rmdir() function of the os module. Note that the directory
must be empty for this to work.
import os
os.rmdir('directory')

If the directory to delete is in the same directory as the python program, then
you need not provide a full path. A relative path will work. Else, a path can
be written as the parameter of the rmdir function.

2. Using the shutil module in python:
The shutil module is a high-level file operation module. You can perform
functions like copying and removal on files and collections of files.
This module can also be used as the os module to delete files or a directory.
But here, the directory is not necessary to be empty. If you delete a directory
using shutil, you can also delete all the contents inside of it (files and
subdirectories).
The function of the shutil module is rmtree().
import shutil
shutil.rmtree('path')

Now here is the place of path you can provide the path to your directory that
you wish to remove.
You cannot delete a single file with the shutil.rmtree() function.

3. Using the Pathlib Module in Python
If you’re working with a python version 3.4+, then the pathlib module is
beneficial for deleting/removing files.

The pathlib module has many similarities with the os module, two of them
being the remove and rmdir methods.
Now, when working with this module, you must first create a Path object.
When an instance of the Path class is created,
a WindowsPath or PosixPath will be returned according to the machine
you’re working on. For Windows OS, a WindowsPath object will be
returned, and for non-windows OS like linux, PosixPath will be returned.
import pathlib
p_object = Path(".")
type(p_object)

Then, the next step is to use the unlink() function. The unlink() function is
used to remove the file or the symbolic link. If you wish to delete a directory,
you must use the rmdir() function instead.
import pathlib
file = pathlib.Path("test/file.txt")
file.unlink()

The same way, if you want to delete a directory:
import pathlib
directory = pathlib.Path("files/")
directory.rmdir()

5. With Statement in Python
What is “with” Statement in Python
Anything that happens in programming consumes memory and disk space.
When we create software we store it into the hard drive and run it in the
memory. One problem that occurs is, if the programmer does not manage
these resources properly then it causes issues like, the software will be slow,
consume too many resources, etc.
One common scenario where this happens is when we try to work with files.
Whenever a file is opened and an operation like writing text is performed, the
data is stored in the temporary buffer.
Wait… What is a buffer?
Buffer is a place to store something temporarily. This is done when the input

and output speed are different. A simple example is, when you watch any
video online, the video service downloads the next few minutes of content to
avoid any interruptions.
Buffer is a generic term and it is not specific to tech.
Coming back to the topic, when we open any file, our computer stores the file
into a buffer so that we are able to perform operations on it without any
issues.
Let’s say we open a file with python code, we perform operations on it, but
we forget to close the file, then all the operations that were performed will be
lost. Why? The reason is until the file is saved all the changes are made to the
data stored in the buffer, and if we do not save the file then our computer will
think that is unuseful data and will remove it. In simple words, our changes
will be lost.
A similar thing can happen when there are exceptions and errors in the
program.

Try…Finally in Python
This is a simple approach, we “try” to do something (performing operations),
and then we do some other thing “finally”.
It doesn’t matter if the code inside “try“ is successful or not, code
inside “finally” will run after the try block.
This is a very common practice in python when we work with files. We open
a file, do some operations like write to the file inside a “try” block and then
close the file in the “finally” block.

With in Python
with statement in python aims to simplify the process of try…finally. It
enables us to write cleaner and safer code. with can be considered as a
simplified version for try…finally code. It handles the memory allocation and
deallocation automatically.
Most commonly with is used with files
with open('hello.txt', mode='w') as myFile:
 myFile.write('I am inside with')

In the above code, we use with to open a file and perform operations on it.
When the with block is executed it automatically closes the file even when an
exception is raised.

If with is not used then it is the responsibility of the programmer to close the
file. If the file is not closed then the performed operations will not be saved
on the file.
But how does “with” know to close a file?
with statement can be used with all expressions that return an object which
implements the context management protocol. Context managers allows us to
allocate and release resources when we want to. This protocol contains two
special functions:

1. __enter__()
2. __exit__()

As the name suggests, __enter()__ is called when the control
enters with block, and __exit()__ is called when the control
leaves with block.
When with statement executes, __enter__() is called on the context manager
object to indicate the starting and when the flow leaves the
context, __exit__() is called to indicate the end.
NOTE: with is shorter than try…finally but it is also less general which
means “with” will work only with objects that support context management
protocol.

Using “with” in user-defined objects
“with” has support with a lot of built-in methods like open()(used for
opening files)but we can also use it in our custom methods. To use it in our
custom methods we have to follow some conditions of with, let’s see how it
can be done.

Wait… Why would I use “with” in my custom
function?
“With” statement can help in many tasks that need to be performed at the
start or end of a procedure.
E.g. In the case of file handling, you can define methods that can open and
close the file for you. Or you are creating an app where you need to contact
with a database, there you need to start a connection when the data transfer
takes place and end the connection when the transfer is done.
“with” has a condition that it works with objects that support context

management protocol, or it works with objects that have
an __enter()__ and __exit()__ method.
We can make our own class with these methods and that will enable us to
use “with”.
Here is an example of a simple class.
class MyContextManager:
 def __enter__(self):
 print("Entered the context")
 return "Entered!"

 def __exit__(self, *args, **kwargs):
 print("Leaving the context")

with MyContextManager() as hello:
 print(hello)

Output:
Entered the context
Entred!
Leaving the context

In the above code, we created a class MyContextManager and created two
methods inside it named __enter__() and __exit__(). When we call this class
using “with” we can see that the __enter__() runs first and
then __exit__() runs.
In the code *args and **kwargs are used because __exit__() takes three
arguments

execution_type
execution_value
traceback

These arguments should occur in this order.
execution_type is exception’s class.
execution_value is an exception instance which indicates the type of
exception like, Zero Division Error, Floating Point Error
traceback is traceback object

When there are no exceptions raised, then all these args will return None,
None, None.

Contextlib Library

contextlib library has a “contextmanager” decorator which provides an
alternative and simple way to implement context management protocol. This
reduces a lot of boilerplate code as it automatically
provides __enter()__ and __exit()__ methods.
Let’s look at an example.
from contextlib import contextmanager

@contextmanager
def myContextManager():
 print("Entering...")
 yield "Hello There"
 print("Exiting...")

with myContextManager() as cm:
 print(cm)

Output:
Entering...
Hello There
Exiting...

Chapter 2: Python Exception
Handling

1. Exception Handling in Python

Introduction
Writing code in order to solve or automate some huge problems is a pretty
powerful thing to do, isn’t it? But as Peter Parker says, ‘with great power
comes great responsibility’. This in fact holds true when writing your code as
well! While our code is being executed, there might be some events that
disrupt the normal flow of your code. These events are errors, and once these
occur python interpreter is in a situation that it cannot deal with and hence
raises an exception.
In python, an exception is a class that represents error. If these exceptions are
not handled, our application or programs go into a crash state. As a
developer, we definitely have the power to write code and solve problems but
it becomes our responsibility to handle these exceptions that might occur and
disrupt the code flow.
Let’s see how these exceptions can be handled in this article but first of all,
let’s take a look at an example that will introduce you to an exception:
a = 10
b = 0
c = b/a
print(c)

Output:
Traceback (most recent call last):
 File "main.py", line 3, in <module>
 c = a/b
ZeroDivisionError: division by zero

Above is an example of what we call an unhandled exception. On line 3, the
code went into a halt state as it's an unhandled exception. To avoid such halt

states, let’s take a look at how to handle exceptions/errors.

What is Exception Handling in Python?
Exceptions can be unexpected or in some cases, a developer might expect
some disruption in the code flow due to an exception that might come up in a
specific scenario. Either way, it needs to be handled.
Python just like any other programming language provides us with a
provision to handle exceptions. And that is by try & except block. Try block
allows us to write the code that is prone to exceptions or errors. If any
exception occurs inside the try block, the except block is triggered, in which
you can handle the exception as now the code will not go into a halt state but
the control will flow into the except block where it can be manually handled.
Any critical code block can be written inside a try clause. Once the expected
or unexpected exception is raised inside this try, it can be handled inside
the except clause (This ‘except’ clause is triggered when an exception is
raised inside ‘try’), as this except block detects any exception raised in the try
block. By default, except detects all types of exceptions, as all the built-in
exceptions in python are inherited from common class Exception.
The basic syntax is as follows:
try:
 # Some Code
except:
 # Executed if we get an error in the try block
 # Handle exception here

Try and except go hand in hand i.e. the syntax is to write and use both of
them. Writing just try or except will give an error.
Let’s consider an example where we’re dividing two numbers. Python
interpreter will raise an exception when we try to divide a number with 0.
When it does, we can take custom action on it in the except clause.
def divideNos(a, b):
 return a/b

try:
 divideNos(10, 0)
except:
 print('some exception occured')

Output:
some exception occured

But how do we know what exactly error was read by the python interpreter?
Well, when a python interpreter raises an exception, it is in the form of an
object that holds information about the exception type and message. Also,
every exception type in python inherits from the base class Exception.
def divideNos(a, b):
 return a/b
try:
 divideNos(10, 0)
Any exception raised by the python interpreter, is inherited by the base class ‘Exception’, hence
any exception raised in the try block will be detected and collected further in the except block for
handling.
except Exception as e:
 print(e) # as e is an object of type Exception, Printing here to see what message it holds.
 print(e.__class__)
division by zero
<class 'ZeroDivisionError'>

In the above code, we used the Exception class with the except statement. It
is used by using the as keyword. This object will contain the cause of the
exception and we’re printing it in order to look what the reason is inside this
Exception object.

Common Exceptions in Python
Before proceeding further, we need to understand what some of the common
exceptions that python throws are. All the inbuilt exceptions in python are
inherited from the common ‘Exception’ class. Some of the common inbuilt
exceptions are:

Exception Name Description
Exception All exceptions inherit this class as the base class for all exceptions.

StopIteration Raised when the next() method of an iterator while iteration does not point to any object
StandardError All exceptions inherit this class except stop StopIteration and SystemExit

ArithmeticError Errors that occur during numeric calculation are inherited by it.
OverflowError When a calculation exceeds the max limit for a specific numeric data type

ZeroDivisionError Raised when division or modulo by zero takes place.
AssertionError Raised when an assert statement fails
AttributeError Raised in case of failure of attribute assignment

EOFError Raised when the end of file is reached, usually occurs when there is no input from input() function
ImportError Raised when an import statement fails
NameError Raised when an identifier is not found in the local or non-local or global scope.
SyntaxError Raised when there is an error in python syntax.

IndentationError Raised when indentation is not proper
TypeError Raised when a specific operation of a function is triggered for an invalid data type

ValueError Raised when invalid values are provided to the arguments of some builtIn function
for a data type that has a valid type of arguments.

RuntimeError Raised when an error does not fall into any other category

NotImplementedError

Raised when an abstract method that needs to be implemented in an inherited
class is not actually implemented.

Catching Specific Exceptions in Python
In the above example, we caught the exception that was being raised in the
try block, but the except blocks are going to catch all the exceptions that try
might raise.
Well, it’s considered a good practice to catch specific types of exceptions and
handle them accordingly. And yes, try can have multiple except blocks. We
can also use a tuple of values in an except to receive multiple specific
exception types.
Let’s take an example to understand this more deeply:
def divideNos(a, b):
 return a/b # An exception might raise here if b is 0 (ZeroDivisionError)
try:
 a = input('enter a:')
 b = input('enter b:')
 print('after division', divideNos(a, b))
 a = [1, 2, 3]
 print(a[3]) # An exception will raise here as size of array ‘a’ is 3 hence is accessible only up until
2nd index

if IndexError exception is raised
except IndexError:
 print('index error')
if ZeroDivisionError exception is raised
except ZeroDivisionError:
 print('zero division error')

Output:
enter a:4
enter b:2
after division 2.0
index error

In the above code the exceptions raised totally depend upon the input
that the user might enter. Hence if a user enters a value as 0 for ‘b’, the
python interpreter will raise a ZeroDivisionError.
And as the array ‘a’ has a length of 3, and the user is trying to access an
element at index 3, an IndexError will be raised by the python

interpreter.
Each except block has been defined for both the exceptions as one of
them receives exceptions of type IndexError and the other receives of
type ZeroDivisionError.

If we want the above snippet to catch exception for
both IndexError OR ZeroDivisionError, it can be re-written as:
def divideNos(a, b):
 return a/b
try:
a = int(input('enter a:'))
b = int(input('enter b:'))
 print('after division', divideNos(a,b))
a = [1, 2, 3]
 print(a[3])
except (IndexError, ZeroDivisionError):
 print('index error OR zero division error')

Output:
enter a:10
enter b:2
after division 5.0
index error OR zero division error

Note: Only one of the except blocks is triggered when an exception is raised.
Consider an example where we have one except as except IndexError and
another as except(IndexError, ZeroDivisionError) then the one written first
will trigger.

Raising Custom Exceptions
Even though exceptions in python are automatically raised in runtime when
some error occurs. Custom and predefined exceptions can also be thrown
manually by raising it for specific conditions or a scenario using
the raise keyword. (A custom exception is an exception that a programmer
might raise if they have a requirement to break the flow of code in some
specific scenario or condition) String messages supporting the reasons for
raising an exception can also be provided to these custom exceptions.
Syntax to Raise an Exception
try:
 # on some specific condition or otherwise
 raise SomeError(OptionalMsg)
Except SomeError as e:

 # Executed if we get an error in the try block
 # Handle exception ‘e’ accordingly

For example:
def isStringEmpty(a):
 if(type(a)!=str):
 raise TypeError('a has to be string')
 if(not a):
 raise ValueError('a cannot be null')
 a.strip()
 if(a == ''):
 return False
 return True

try:
a = 123
 print('isStringEmpty:', isStringEmpty(a))
except ValueError as e:
 print('ValueError raised:', e)

except TypeError as e:
 print('TypeError raised:', e)

Output:
TypeError raised: a has to be string

In the above code, the variable ‘a’ can hold whatever value that is
assigned to it. Here we assign it a number and we’re passing to a
custom method isStringEmpty that checks if a string is an empty string.
But we orchestrated it to throw a TypeError, by assigning ‘a’ variable a
number.
In the method, we’re checking if the variable is a string or not and if it
holds a value or not. In this case, it is supposed to be a string, but
assigned it as a number as we’re raising an exception by using

try except and ELSE!
Sometimes you might have a use case where you want to run some specific
code only when there are no exceptions. For such scenarios, the else keyword
can be used with the try block. Note that this else keyword and its block are
optional.

Syntax With Else Clause
try:
 # on some specific condition or otherwise
 raise SomeError(OptionalMsg)
except SomeError as e:
 # Executed if we get an error in the try block
 # Handle exception ‘e’ accordingly
else
 # Executed if no exceptions are raised

Example:
When an exception is not raised, it flows into the optional else block.
try:
b = 10
c = 2
a = b/c
 print(a)
except:
 print('Exception raised')
else:
 print('no exceptions raised')

Output:
5.0
no exceptions raised

In the above code, As both the inputs are greater than 0 which is not a risk
to DivideByZeroException, hence try block won’t raise any exception and
hence ‘except’ block won’t be triggered. And only when the control doesn’t
flow to the except block, it flows to the else block. Further handling can be
done inside this else block if there is something you want to do.
Example:
When an exception is raised, control flows into the except block and not
the else block.
try:
 b = 10
 c = 0
 a = b/c
 print(a)
except Exception as e:
 print('Exception raised:', e)
else:
 print('no exceptions raised')

Output:
Exception raised: division by zero

In the above code, As both the ‘b’ input is 0 which is a risk
to DivideByZeroException, hence the ‘try’ block will raise an exception, and
hence the ‘except’ block will be triggered. And now as there is an exception
raised, the control flows to the except block and not to the else block.

Try Clause with Finally
Finally is a keyword that is used along with try and except, when we have a
piece of code that is to be run irrespective of if try raises an exception or not.
Code inside finally will always run after try and catch.
Example:
Where an exception is raised in the try block and except is triggered.
try:
temp = [1, 2, 3]
temp[4]
except Exception as e:
 print('in exception block: ', e)
else:
 print('in else block')
finally:
 print('in finally block')

Output:
in exception block: list index out of range
in finally block

In the above code, we’re creating an array with 3 elements, i.e. max index up
till 2. But when we try to access the 4th index, it will raise an exception
of index out of range and will be caught in the except block. But here we
need to observe that the finally block has also been triggered.
Example:
Rewriting the above code such that exception is not raised. Where an
exception is not raised and else and finally both are triggered.
Note: else block will always be triggered before finally and finally will
always trigger irrespective of any exceptions raised or not.
try:
temp = [1, 2, 3]
temp[1]
except Exception as e:
 print('in exception block: ', e)
else:
 print('in else block')

finally:
 print('in finally block')

Output:
in else block
in finally block

In the above code, we’re creating an array with 3 elements, i.e. max index up
till 2. But when we try to access the 2nd index, now it will not raise an
exception and control will now flow to another block and then to finally.
But here we need to observe that the finally block has also been triggered
even though the exception was not raised.

Why Use Finally or Else in try..except?
def Checkout(itemsInCart):
 try:
 id = GetOrderIdForBooking() # Always creates an order before booking items
 BookItems(itemsInCart) # assuming this method raises an exception while booking one of the
items
 except Exception as e:
 LogErrorOccuredWhileBooking(e) # Log failed booking
 else:
 LogSuccessfulBookingStatus(id) # Log successful booking
 finally:
 EmailOrderStatusToUser(id) # Either ways send order email to user

itemsInCart = ['mobile', 'earphones', 'charger'] # assume user has these items in their cart
Checkout(itemsInCart) # checking out items the user has in their cart.

Consider above as a pseudo-code to a program where it checks out
items added by the user in their cart.
The Checkout method always creates an order id before booking all the
items in the cart.
Assuming itemsInCart contains all the items the user has added to a
cart.
In the checkout experience of an e-commerce website, an orderId is
created irrespective of whether a booking of all items has been a
success, failed, or partially failed.
Hence in the above pseudo-code, we’re creating
an orderId using GetOrderIdForBooking() and assume it returns a
random string for each order. BookItems() books all the items for us in
the itemsInCart array.
If some error occurs while booking items, we have to log the reason for

the exception LogErrorOccuredWhileBooking() does that job for us
and if it's successful we have to log that the booking was successful.
Now whatever the status of the order is, either way we have to email
the status of the order to the user and that’s what
the EmailOrderStatus() does for us.

The above example perfectly fits for an application of try, except or else and
finally block as each block is playing a role that might’ve been difficult to
achieve if we didn’t use these blocks.

What Happens if Errors are Raised in Except or
Finally Block?
try:
 SomeFunction() # assuming it throws some error
except exception as e:
 Log(e) # assuming some exception occurred again while logging this exception
finally:
 # This will still execute even after an error was raised inside catch block & gives you a final chance
to handle the situation your way

If an error occurs while handling something in an except block,
the finally block still gives us a chance to handle the situation our way.
Note: Once an exception/error is raised in the except
block, finally block is triggered but the program still goes into a halt
state post to that and the flow is broken.
But what if an error occurs in the finally block? Let’s orchestrate these
series of events in the following code:

try:
 raise Exception("message from try block")
except Exception as e:
 print('in except block:', e)
 raise Exception("exception raised in except block")
finally:
 print("in finally")
 raise Exception("exception raised in finally block")

Output:
in except block: message from try block
in finally
Traceback (most recent call last):
 File "<string>", line 2, in <module>
Exception: message from try block

During handling of the above exception, another exception occurred:
Traceback (most recent call last):
 File "<string>", line 5, in <module>
Exception: exception raised in except block

During handling of the above exception, another exception occurred:
Traceback (most recent call last):
 File "<string>", line 8, in <module>
Exception: exception raised in finally block

2. Assert Keyword in Python
Introduction to Assert in Python
Multiple times during programming, the programmer knows that there are
certain conditions or assumptions that are always going to be True. If at any
point of time during the execution of the program, any statement with the
condition that is meant to be True evaluates to False, then it shouldn’t allow
the code to execute further. Essentially, we immediately terminate the
program as soon as we find something fishy, that shouldn’t exist. This task is
achieved with the help of assert.

What is Assert?
An assert statement is something that can be used to verify any logical
assumptions you make in your code. It is mainly used as a debugging tool.
For example, if we write a function that performs division, we know that the
divisor must not be zero, so we “assert” that the divisor shouldn’t be equal to
zero so as to prevent any kinds of errors/bugs that could occur due to this
problem in the code later on.
As input, the assert in python takes an expression that is to be evaluated, and
an error message, which is optional. Basically, when the code encounters any
assert statements, one of two things can happen.
One, the code runs without any issues, and two, it throws an AssertionError,
terminating the program. We are going to delve deep into these situations, but
we must first understand why exactly the assert statement should be used.

Why Use Assert in Python?
An assert statement recognizes issues right off the bat in your program, where
the reason is clear, instead of later when some other operation fails.
They can be termed as internal self-checks for your code. The aim of using
the assert statements is so that developers can track the root cause of the bug
in their code quickly.
Assert statements particularly come in handy when testing or assuring the
quality of any application or software.

Python Assert Statement
Syntax:
assert <condition> , <error message>

As stated above, we have a condition and an error message as part of the
assert statement. If the condition used in the assert statement evaluates to
True, the code runs normally i.e. without throwing errors or terminating the
program. On the other hand, if it evaluates to False (unwanted condition) it
throws an AssertionError along with the error message, if provided and
terminates the program.
Assert in python,
assert <condition>

is almost similar to this:
if __debug__:
 if not <condition>:
 raise AssertionError()

What is __debug__ here? It is a constant that is used by Python to determine
if statements like assert must be executed.
In the Python programming language, whether we use the assert statement, or
raise the error using if, it does not have any major differences, they’re almost
similar. The code with if raises an AssertionError when the debug mode is on
(__debug__ == True), and the condition provided evaluates to False.
When we can use an if statement, which is definitely easier to
understand, why boggle minds with the assert statement? There are two main
reasons – readable code, and the option of disabling the assert statements if
required.
Using the assert statement in place of the if condition makes the code more

readable and shorter. An advantage of using the assert statement over
the if condition is that an assert statement can be disabled, unlike an IF
condition.
To disable any assert statements in the program, running python in optimized
mode (__debug__ == False), ignores all assert statements. The -O flag can be
passed for the same.
python -O program.py
Now that we have seen the syntax of the assert statement, as well as its
advantage over if, let us move on to see what it looks like in the Python shell,
and how we run it:
>>> assert True # nothing, because <condition> is True
>>> assert False # will raise an error but no message, since not specified
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AssertionError
>>> assert False, "This statement is False" # condition is False, hence error + message, since it is
specified

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AssertionError: This statement is False

If the assertion fails, a message can be printed like this as done in the shell
example above :
assert False "This assertion has failed"

Not adding the error message does not make any difference in the way the
program runs. The error displayed will be the Traceback error as shown in
the example above and terminates the program. It just helps understand the
assertion error more clearly.
Assertion errors terminate the program you have written, but, what if we did
not want that to happen? What if we want the code to run as-is, and along
with it, we would like the error to be detected?
The solution for this problem is the try-except block. The try-except block in
Python is another means of handling and checking errors in Python. First,
only the code that is written inside the try block will get executed when there
isn’t any error in the program and the except clause is skipped. While in the
presence of an error in the try block, the code in the except block will be
executed and code in the try block will be skipped.
Here’s how we handle a basic division by 0 assertion error using the try-

except block:
try:
 x = 1
 y = 0
 assert y != 0 , "Division by zero not possible!"
 print(x / y)
except for AssertionError as msg:
 print(msg) # error message given by user gets printed

print("The rest of the program still runs!")

Let’s try and understand what happened in the above code. We used an assert
statement, that, as we read above prints an error message upon evaluation of
condition to False, and we also print a msg in the except block. What are we
doing here, and why?
When we’re in the try block, we have values of x as 1 and y as 0, and an
assert condition that prevents the division of any number by 0. Now since the
value of y is 0, our assert statement evaluates to False and hence throws an
AssertionError. We know that these errors terminate the program, but since
we do not want it to terminate, we use the try-except. As soon as there is an
error in the try block, we immediately move to the except block to handle the
errors.
When we write a simple assert statement with a condition and an error
message, what gets printed? The error message. So, the except block
>>> assert(2 + 3 == 6, "Incorrect addition") # wrong
>>> assert 2 + 3 == 6, "Incorrect addition" # correct

The first statement with the parentheses will not work because you’re
essentially providing the assert statement with a tuple. The format of a tuple
in python is (Val1, Val2, …) and any tuple written in the context of bool is
always true unless it does not contain any values. This means that if we do
not provide any condition to the assert statement, like :
assert()
it will raise an AssertionError because empty tuples are False.

What Does the Assertion Error do to our Code?
Upon reading and understanding multiple times that unhandled assertions
terminate programs, a question comes to mind – How will it terminate the
program?
There are essentially two ways of stopping the execution of a program –

by exit() and by abort().
When a program is terminated by using exit(), the function performs –
flushing of unwritten buffered data, closing of open files, removal of
temporary files and it returns an integer exit status to the operating system.
The abort() function may not close any files that are open, may not flush
stream buffers, and may also not delete any temporary files. One major
difference between both kinds of functions that terminate a program is
that abort() results in abnormal termination while exit() causes normal
termination.
Termination of the program due to an assert statement occurs with the help of
the abort() function when the condition mentioned in the assert statement
returns False.
Finally, now that we know what assert is, why it is useful, and how we can
tackle it, we must address the elephant in the room. Where exactly can you
use it?

Where is Assertion used in Python?
Assertions are not used to flag expected error conditions, similar to “file not
found” where a user can make a restorative move (or simply attempt once
more). Instead, the assert statement is used mainly for debugging purposes,
1. Checking parameter types / classes / values
The assert statement can be used if your program has the tendency of
controlling every parameter entered by the user or whatever else
Example:
def kelvin_to_fahrenheit(Temp):
 assert (Temp >= 0),"Colder than absolute zero!" # User input cannot violate a fact, hence the use
of assert
 return ((Temp - 273) * 1.8) + 32

2. Checking “can’t happen” situations
While the assert statement is useful in debugging a program, it is discouraged
when used for checking user input unless it corrupts a universal truth. The
statement must only be used to identify any “this should not happen”
situation i.e. a situation where any fact, or a statement that is definitely True,
becomes False due to a bug in the code.
For example, if the user enters fewer characters than required in the input,
then it cannot be termed as a “this should not happen” situation, where the

use of the assert statement is a must because the user isn’t violating any fact
that is meant to be True always. It is not a blunder to use an assert statement
for trivial issues such as this, but it is considered a bad practice.
def something(s: str): # a function that takes a long string as the input to do something
 assert len(s) >= 8 # bad practice, the length of the input string doesn't violate a universal truth

 # do something

However, if say, a program involves calculations with radius and diameter of
a circle and the radius of the circle isn’t half of the diameter at any point in
the program, then this comes under the “this should not happen” case, as it is
a fact that cannot be changed or violated.
For example,
some complex operations involving the radius of a circle

assert radius == diameter / 2, "Calculations have corrupted the value of radius!!!"

return statements with radius or continuation in the program

If during the complex operations, the value of the radius changes and is
unequal to half of the diameter, our assert statement condition immediately
detects it and throws an error so as to avoid any further complications/errors
in the code or provide unwanted output.

3. Documentation of Understanding
Using the assert statement in your code is useful for documenting the
programmer’s understanding of the code. It makes the programmer’s
assumptions clear for themselves, as well as anyone else who works on the
same code in the future. If for any reason, in the future the code gets broken,
the reason for failure will be obvious, and the next time the assert condition
evaluates to False, the caller will get the AssertionError exception.
Another Example of Assertion in Python
Say you have a function that calculates the cost of an item after a discount. In
this situation, we can positively say that the discounted cost will definitely be
greater than 0 and lesser than the original cost.
If the discounted cost doesn’t lie in this range, then we are in a “this should
not happen” situation. Hence, we use the assert statement.
def calculate_discount(cost, discount):
 discounted_cost = cost - [discount * cost]
 assert 0 <= discounted_cost <= cost # used an assert because a fact could have been violated, and
also serves as a depiction of the understanding of the programmer

 return discounted_cost

Chapter 3: Python Object & Class

1. Python Object Oriented
Programming
Object Oriented Programming
Python is a multi-paradigm programming language. It supports different
programming approaches.

One of the popular approaches to solve a programming problem is by
creating objects. This is known as Object-Oriented Programming (OOP).

An object has two characteristics:
attributes

behavior

Let's take an example:

A parrot is an object, as it has the following properties:
name, age, color as attributes

singing, dancing as behavior

The concept of OOP in Python focuses on creating reusable code. This
concept is also known as DRY (Don't Repeat Yourself).

In Python, the concept of OOP follows some basic principles:

Class
A class is a blueprint for the object.

We can think of class as a sketch of a parrot with labels. It contains all the
details about the name, colors, size etc. Based on these descriptions, we can

study about the parrot. Here, a parrot is an object.

The example for class of parrot can be :

class Parrot:

 pass

Here, we use the class keyword to define an empty class Parrot. From class,
we construct instances. An instance is a specific object created from a
particular class.

Object
An object (instance) is an instantiation of a class. When class is defined, only
the description for the object is defined. Therefore, no memory or storage is
allocated.

The example for object of parrot class can be:

obj = Parrot()

Here, obj is an object of class Parrot.
Suppose we have details of parrots. Now, we are going to show how to build
the class and objects of parrots.

Example 1: Creating Class and Object in Python
class Parrot:

 # class attribute
 species = "bird"

 # instance attribute
 def __init__(self, name, age):
 self.name = name
 self.age = age

instantiate the Parrot class
blu = Parrot("Blu", 10)

woo = Parrot("Woo", 15)

access the class attributes
print("Blu is a {}".format(blu.__class__.species))
print("Woo is also a {}".format(woo.__class__.species))

access the instance attributes
print("{} is {} years old".format(blu.name, blu.age))
print("{} is {} years old".format(woo.name, woo.age))

Output

Blu is a bird
Woo is also a bird
Blu is 10 years old
Woo is 15 years old

In the above program, we created a class with the name Parrot. Then, we
define attributes. The attributes are a characteristic of an object.
These attributes are defined inside the __init__ method of the class. It is the
initializer method that is first run as soon as the object is created.
Then, we create instances of the Parrot class. Here, blu and woo are
references (value) to our new objects.
We can access the class attribute using __class__.species. Class attributes are
the same for all instances of a class. Similarly, we access the instance
attributes using blu.name and blu.age. However, instance attributes are
different for every instance of a class.

Methods
Methods are functions defined inside the body of a class. They are used to
define the behaviors of an object.

Example 2 : Creating Methods in Python
class Parrot:

 # instance attributes
 def __init__(self, name, age):
 self.name = name
 self.age = age

 # instance method
 def sing(self, song):

 return "{} sings {}".format(self.name, song)

 def dance(self):
 return "{} is now dancing".format(self.name)

instantiate the object
blu = Parrot("Blu", 10)

call our instance methods
print(blu.sing("'Happy'"))
print(blu.dance())

Output

Blu sings 'Happy'
Blu is now dancing

In the above program, we define two methods i.e sing() and dance(). These
are called instance methods because they are called on an instance object
i.e blu.

Inheritance
Inheritance is a way of creating a new class for using details of an existing
class without modifying it. The newly formed class is a derived class (or
child class). Similarly, the existing class is a base class (or parent class).

Example 3: Use of Inheritance in Python
parent class
class Bird:

 def __init__(self):
 print("Bird is ready")

 def whoisThis(self):
 print("Bird")

 def swim(self):
 print("Swim faster")

child class
class Penguin(Bird):

 def __init__(self):
 # call super() function

 super().__init__()
 print("Penguin is ready")

 def whoisThis(self):
 print("Penguin")

 def run(self):
 print("Run faster")

peggy = Penguin()
peggy.whoisThis()
peggy.swim()
peggy.run()

Output

Bird is ready
Penguin is ready
Penguin
Swim faster
Run faster

In the above program, we created two classes i.e. Bird (parent class)
and Penguin (child class). The child class inherits the functions of parent
class. We can see this from the swim() method.
Again, the child class modified the behavior of the parent class. We can see
this from the whoisThis() method. Furthermore, we extend the functions of
the parent class, by creating a new run() method.
Additionally, we use the super() function inside the __init__() method. This
allows us to run the __init__() method of the parent class inside the child
class.

Encapsulation
Using OOP in Python, we can restrict access to methods and variables. This
prevents data from direct modification which is called encapsulation. In
Python, we denote private attributes using underscore as the prefix i.e
single _ or double __.

Example 4: Data Encapsulation in Python
class Computer:

 def __init__(self):
 self.__maxprice = 900

 def sell(self):
 print("Selling Price: {}".format(self.__maxprice))

 def setMaxPrice(self, price):
 self.__maxprice = price

c = Computer()
c.sell()

change the price
c.__maxprice = 1000
c.sell()

using setter function
c.setMaxPrice(1000)
c.sell()

Output

Selling Price: 900
Selling Price: 900
Selling Price: 1000

In the above program, we defined a Computer class.
We used __init__() method to store the maximum selling price of Computer.
Here, notice the code

c.__maxprice = 1000

Here, we have tried to modify the value of __maxprice outside of the class.
However, since __maxprice is a private variable, this modification is not seen
on the output.
As shown, to change the value, we have to use a setter function
i.e setMaxPrice() which takes price as a parameter.

Polymorphism
Polymorphism is an ability (in OOP) to use a common interface for multiple
forms (data types).

Suppose, we need to color a shape, there are multiple shape options
(rectangle, square, circle). However we could use the same method to color
any shape. This concept is called Polymorphism.

Example 5: Using Polymorphism in Python
class Parrot:

 def fly(self):
 print("Parrot can fly")

 def swim(self):
 print("Parrot can't swim")

class Penguin:

 def fly(self):
 print("Penguin can't fly")

 def swim(self):
 print("Penguin can swim")

common interface
def flying_test(bird):
 bird.fly()

#instantiate objects
blu = Parrot()
peggy = Penguin()

passing the object
flying_test(blu)
flying_test(peggy)

Output

Parrot can fly
Penguin can't fly

In the above program, we defined two classes Parrot and Penguin. Each of

them have a common fly() method. However, their functions are different.
To use polymorphism, we created a common interface
i.e flying_test() function that takes any object and calls the
object's fly() method. Thus, when we passed the blu and peggy objects in
the flying_test() function, it ran effectively.

Python Objects and Classes
Python Objects and Classes
Python is an object-oriented programming language. Unlike procedure-
oriented programming, where the main emphasis is on functions, object-
oriented programming stresses on objects.

An object is simply a collection of data (variables) and methods (functions)
that act on those data. Similarly, a class is a blueprint for that object.

We can think of a class as a sketch (prototype) of a house. It contains all the
details about the floors, doors, windows, etc. Based on these descriptions we
build the house. House is the object.

As many houses can be made from a house's blueprint, we can create many
objects from a class. An object is also called an instance of a class and the
process of creating this object is called instantiation.

Defining a Class in Python
Like function definitions begin with the def keyword in Python, class
definitions begin with a class keyword.
The first string inside the class is called docstring and has a brief description
of the class. Although not mandatory, this is highly recommended.

Here is a simple class definition.

class MyNewClass:
 '''This is a docstring. I have created a new class'''

 pass

A class creates a new local namespace where all its attributes are defined.
Attributes may be data or functions.
There are also special attributes in it that begins with double underscores __.
For example, __doc__ gives us the docstring of that class.
As soon as we define a class, a new class object is created with the same
name. This class object allows us to access the different attributes as well as
to instantiate new objects of that class.

class Person:
 "This is a person class"
 age = 10

 def greet(self):
 print('Hello')

Output: 10
print(Person.age)

Output: <function Person.greet>
print(Person.greet)

Output: "This is a person class"
print(Person.__doc__)

Output

10
<function Person.greet at 0x7fc78c6e8160>
This is a person class

Creating an Object in Python
We saw that the class object could be used to access different attributes.

It can also be used to create new object instances (instantiation) of that class.
The procedure to create an object is similar to a function call.

>>> harry = Person()

This will create a new object instance named harry. We can access the
attributes of objects using the object name prefix.
Attributes may be data or method. Methods of an object are corresponding
functions of that class.

This means to say, since Person.greet is a function object (attribute of
class), Person.greet will be a method object.

class Person:
 "This is a person class"
 age = 10

 def greet(self):
 print('Hello')

create a new object of Person class
harry = Person()

Output: <function Person.greet>
print(Person.greet)

Output: <bound method Person.greet of <__main__.Person object>>
print(harry.greet)

Calling object's greet() method
Output: Hello
harry.greet()

Output

<function Person.greet at 0x7fd288e4e160>
<bound method Person.greet of <__main__.Person object at 0x7fd288e9fa30>>
Hello

You may have noticed the self parameter in function definition inside the

class but we called the method simply as harry.greet() without
any arguments. It still worked.
This is because, whenever an object calls its method, the object itself is
passed as the first argument. So, harry.greet() translates
into Person.greet(harry).
In general, calling a method with a list of n arguments is equivalent to calling
the corresponding function with an argument list that is created by inserting
the method's object before the first argument.

For these reasons, the first argument of the function in class must be the
object itself. This is conventionally called self. It can be named otherwise but
we highly recommend to follow the convention.
Now you must be familiar with class object, instance object, function object,
method object and their differences.

Constructors in Python
Class functions that begin with double underscore __ are called special
functions as they have special meaning.
Of one particular interest is the __init__() function. This special function gets
called whenever a new object of that class is instantiated.
This type of function is also called constructors in Object Oriented
Programming (OOP). We normally use it to initialize all the variables.

class ComplexNumber:
 def __init__(self, r=0, i=0):
 self.real = r
 self.imag = i

 def get_data(self):
 print(f'{self.real}+{self.imag}j')

Create a new ComplexNumber object
num1 = ComplexNumber(2, 3)

Call get_data() method
Output: 2+3j

num1.get_data()

Create another ComplexNumber object
and create a new attribute 'attr'
num2 = ComplexNumber(5)
num2.attr = 10

Output: (5, 0, 10)
print((num2.real, num2.imag, num2.attr))

but c1 object doesn't have attribute 'attr'
AttributeError: 'ComplexNumber' object has no attribute 'attr'
print(num1.attr)

Output

2+3j
(5, 0, 10)
Traceback (most recent call last):
 File "<string>", line 27, in <module>
 print(num1.attr)
AttributeError: 'ComplexNumber' object has no attribute 'attr'

In the above example, we defined a new class to represent complex numbers.
It has two functions, __init__() to initialize the variables (defaults to zero)
and get_data() to display the number properly.
An interesting thing to note in the above step is that attributes of an object
can be created on the fly. We created a new attribute attr for object num2 and
read it as well. But this does not create that attribute for object num1.

Deleting Attributes and Objects
Any attribute of an object can be deleted anytime, using the del statement.
Try the following on the Python shell to see the output.

>>> num1 = ComplexNumber(2,3)
>>> del num1.imag
>>> num1.get_data()
Traceback (most recent call last):

...
AttributeError: 'ComplexNumber' object has no attribute 'imag'

>>> del ComplexNumber.get_data
>>> num1.get_data()
Traceback (most recent call last):
...
AttributeError: 'ComplexNumber' object has no attribute 'get_data'

We can even delete the object itself, using the del statement.

>>> c1 = ComplexNumber(1,3)
>>> del c1
>>> c1
Traceback (most recent call last):
...
NameError: name 'c1' is not defined

Actually, it is more complicated than that. When we do c1 =
ComplexNumber(1,3), a new instance object is created in memory and the
name c1 binds with it.
On the command del c1, this binding is removed and the name c1 is deleted
from the corresponding namespace. The object however continues to exist in
memory and if no other name is bound to it, it is later automatically
destroyed.
This automatic destruction of unreferenced objects in Python is also called
garbage collection.

2. Python Inheritance
Inheritance enables us to define a class that takes all the functionality from a
parent class and allows us to add more. In this tutorial, you will learn to use
inheritance in Python.

Inheritance in Python

Inheritance is a powerful feature in object oriented programming.

It refers to defining a new class with little or no modification to an existing
class. The new class is called derived (or child) class and the one from
which it inherits is called the base (or parent) class.

Python Inheritance Syntax

class BaseClass:

 Body of base class

class DerivedClass(BaseClass):

 Body of derived class

Derived class inherits features from the base class where new features can be
added to it. This results in re-usability of code.

Example of Inheritance in Python
To demonstrate the use of inheritance, let us take an example. A polygon is a
closed figure with 3 or more sides. Say, we have a class
called Polygon defined as follows.

class Polygon:
 def __init__(self, no_of_sides):
 self.n = no_of_sides
 self.sides = [0 for i in range(no_of_sides)]

 def inputSides(self):
 self.sides = [float(input("Enter side "+str(i+1)+" : ")) for i in range(self.n)]

 def dispSides(self):
 for i in range(self.n):

 print("Side",i+1,"is",self.sides[i])

This class has data attributes to store the number of sides n and magnitude of
each side as a list called sides.
The inputSides() method takes in the magnitude of each side
and dispSides() displays these side lengths.
A triangle is a polygon with 3 sides. So, we can create a class
called Triangle which inherits from Polygon. This makes all the attributes
of Polygon class available to the Triangle class.
We don't need to define them again (code reusability). Triangle can be
defined as follows.

class Triangle(Polygon):
 def __init__(self):
 Polygon.__init__(self,3)

 def findArea(self):
 a, b, c = self.sides
 # calculate the semi-perimeter
 s = (a + b + c) / 2
 area = (s*(s-a)*(s-b)*(s-c)) ** 0.5
 print('The area of the triangle is %0.2f' %area)

However, class Triangle has a new method findArea() to find and print the
area of the triangle. Here is a sample run.

>>> t = Triangle()

>>> t.inputSides()
Enter side 1 : 3
Enter side 2 : 5
Enter side 3 : 4

>>> t.dispSides()
Side 1 is 3.0
Side 2 is 5.0
Side 3 is 4.0

>>> t.findArea()
The area of the triangle is 6.00

We can see that even though we did not define methods
like inputSides() or dispSides() for class Triangle separately, we were able to
use them.
If an attribute is not found in the class itself, the search continues to the base
class. This repeats recursively, if the base class is itself derived from other
classes.

Method Overriding in Python
In the above example, notice that __init__() method was defined in both
classes, Triangle as well Polygon. When this happens, the method in the
derived class overrides that in the base class. This is to
say, __init__() in Triangle gets preference over the __init__ in Polygon.
Generally when overriding a base method, we tend to extend the definition
rather than simply replace it. The same is being done by calling the method in
base class from the one in derived class
(calling Polygon.__init__() from __init__() in Triangle).
A better option would be to use the built-in function super().
So, super().__init__(3) is equivalent to Polygon.__init__(self,3) and is
preferred. To learn more about the super() function in Python, visit Python
super() function.
Two built-in functions isinstance() and issubclass() are used to check
inheritances.
The function isinstance() returns True if the object is an instance of the class
or other classes derived from it. Each and every class in Python inherits from
the base class object.

>>> isinstance(t,Triangle)
True

>>> isinstance(t,Polygon)
True

>>> isinstance(t,int)
False

>>> isinstance(t,object)
True

Similarly, issubclass() is used to check for class inheritance.

>>> issubclass(Polygon,Triangle)
False

>>> issubclass(Triangle,Polygon)
True

>>> issubclass(bool,int)
True

3. Python Multiple Inheritance
Python Multiple Inheritance
A class can be derived from more than one base class in Python, similar to
C++. This is called multiple inheritance.
In multiple inheritance, the features of all the base classes are inherited into
the derived class. The syntax for multiple inheritance is similar to
single inheritance.

Example

class Base1:
 pass

class Base2:
 pass

class MultiDerived(Base1, Base2):
 pass

Here, the MultiDerived class is derived from Base1 and Base2 classes.

Python Multilevel Inheritance
We can also inherit from a derived class. This is called multilevel inheritance.
It can be of any depth in Python.

In multilevel inheritance, features of the base class and the derived class are
inherited into the new derived class. An example with corresponding
visualization is given below.

class Base:
 pass

class Derived1(Base):
 pass

class Derived2(Derived1):
 pass

Method Resolution Order in Python
Every class in Python is derived from the object class. It is the most base type
in Python.
So technically, all other classes, either built-in or user-defined, are derived
classes and all objects are instances of the object class.

Output: True
print(issubclass(list,object))

Output: True
print(isinstance(5.5,object))

Output: True
print(isinstance("Hello",object))

In the multiple inheritance scenario, any specified attribute is searched first in
the current class. If not found, the search continues into parent classes in
depth-first, left-right fashion without searching the same class twice.

So, in the above example of MultiDerived class the search order is
[MultiDerived, Base1, Base2, object]. This order is also called linearization
of MultiDerived class and the set of rules used to find this order is
called Method Resolution Order (MRO).
MRO must prevent local precedence ordering and also provide monotonicity.
It ensures that a class always appears before its parents. In case of multiple
parents, the order is the same as tuples of base classes.

MRO of a class can be viewed as the __mro__ attribute or the mro() method.
The former returns a tuple while the latter returns a list.

>>> MultiDerived.__mro__
(<class '__main__.MultiDerived'>,
<class '__main__.Base1'>,
<class '__main__.Base2'>,
<class 'object'>)

>>> MultiDerived.mro()
[<class '__main__.MultiDerived'>,
<class '__main__.Base1'>,
<class '__main__.Base2'>,
<class 'object'>]

Here is a little more complex multiple inheritance example and its
visualization along with the MRO.
Demonstration of MRO

class X:
 pass

class Y:
 pass

class Z:
 pass

class A(X, Y):
 pass

class B(Y, Z):
 pass

class M(B, A, Z):
 pass

Output:
[<class '__main__.M'>, <class '__main__.B'>,
<class '__main__.A'>, <class '__main__.X'>,
<class '__main__.Y'>, <class '__main__.Z'>,
<class 'object'>]

print(M.mro())

Output

[<class '__main__.M'>, <class '__main__.B'>, <class '__main__.A'>, <class '__main__.X'>,
<class '__main__.Y'>, <class '__main__.Z'>, <class 'object'>]

4. Python Operator Overloading
You can change the meaning of an operator in Python depending upon the
operands used. In this tutorial, you will learn how to use operator overloading
in Python Object Oriented Programming.

Python Operator Overloading
Python operators work for built-in classes. But the same operator behaves
differently with different types. For example, the + operator will perform
arithmetic addition on two numbers, merge two lists, or concatenate two
strings.

This feature in Python that allows the same operator to have different
meaning according to the context is called operator overloading.

So what happens when we use them with objects of a user-defined class? Let
us consider the following class, which tries to simulate a point in 2-D
coordinate system.
class Point:
 def __init__(self, x=0, y=0):
 self.x = x
 self.y = y

p1 = Point(1, 2)
p2 = Point(2, 3)
print(p1+p2)

Output

Traceback (most recent call last):
 File "<string>", line 9, in <module>
 print(p1+p2)
TypeError: unsupported operand type(s) for +: 'Point' and 'Point'

Here, we can see that a TypeError was raised, since Python didn't know how
to add two Point objects together.
However, we can achieve this task in Python through operator overloading.
But first, let's get a notion about special functions.

Python Special Functions
Class functions that begin with double underscore __ are called special
functions in Python.
These functions are not the typical functions that we define for a class.
The __init__() function we defined above is one of them. It gets called every
time we create a new object of that class.
There are numerous other special functions in Python. Visit Python Special
Functions to learn more about them.

Using special functions, we can make our class compatible with built-in
functions.

>>> p1 = Point(2,3)
>>> print(p1)
<__main__.Point object at 0x00000000031F8CC0>

Suppose we want the print() function to print the coordinates of
the Point object instead of what we got. We can define a __str__() method in
our class that controls how the object gets printed. Let's look at how we can
achieve this:

class Point:
 def __init__(self, x = 0, y = 0):
 self.x = x
 self.y = y

 def __str__(self):
 return "({0},{1})".format(self.x,self.y)

Now let's try the print() function again.

class Point:
 def __init__(self, x=0, y=0):
 self.x = x
 self.y = y

 def __str__(self):
 return "({0}, {1})".format(self.x, self.y)

p1 = Point(2, 3)
print(p1)

Output

(2, 3)

That's better. Turns out, that this same method is invoked when we use the

built-in function str() or format().

>>> str(p1)
'(2,3)'

>>> format(p1)
'(2,3)'

So, when you use str(p1) or format(p1), Python internally calls
the p1.__str__() method. Hence the name, special functions.
Now let's go back to operator overloading.

Overloading the + Operator
To overload the + operator, we will need to implement __add__() function in
the class. With great power comes great responsibility. We can do whatever
we like, inside this function. But it is more sensible to return a Point object of
the coordinate sum.

class Point:
 def __init__(self, x=0, y=0):
 self.x = x
 self.y = y

 def __str__(self):
 return "({0},{1})".format(self.x, self.y)

 def __add__(self, other):
 x = self.x + other.x
 y = self.y + other.y
 return Point(x, y)

Now let's try the addition operation again:
class Point:
 def __init__(self, x=0, y=0):
 self.x = x

 self.y = y

 def __str__(self):
 return "({0},{1})".format(self.x, self.y)

 def __add__(self, other):
 x = self.x + other.x
 y = self.y + other.y
 return Point(x, y)

p1 = Point(1, 2)
p2 = Point(2, 3)

print(p1+p2)

Output

(3,5)

What actually happens is that, when you use p1 + p2, Python
calls p1.__add__(p2) which in turn is Point.__add__(p1,p2). After this, the
addition operation is carried out the way we specified.
Similarly, we can overload other operators as well. The special function that
we need to implement is tabulated below.

Operator Expression Internally

Addition p1 + p2 p1.__add__(p2)

Subtraction p1 - p2 p1.__sub__(p2)

Multiplication p1 * p2 p1.__mul__(p2)

Power p1 ** p2 p1.__pow__(p2)

Division p1 / p2 p1.__truediv__(p2)

Floor Division p1 // p2 p1.__floordiv__(p2)

Remainder (modulo) p1 % p2 p1.__mod__(p2)

Bitwise Left Shift p1 << p2 p1.__lshift__(p2)

Bitwise Right Shift p1 >> p2 p1.__rshift__(p2)

Bitwise AND p1 & p2 p1.__and__(p2)

Bitwise OR p1 | p2 p1.__or__(p2)

Bitwise XOR p1 ^ p2 p1.__xor__(p2)

Bitwise NOT ~p1 p1.__invert__()

Overloading Comparison Operators
Python does not limit operator overloading to arithmetic operators only. We
can overload comparison operators as well.

Suppose we wanted to implement the less than symbol < symbol in
our Point class.
Let us compare the magnitude of these points from the origin and return the
result for this purpose. It can be implemented as follows.
overloading the less than operator
class Point:
 def __init__(self, x=0, y=0):
 self.x = x
 self.y = y

 def __str__(self):
 return "({0},{1})".format(self.x, self.y)

 def __lt__(self, other):
 self_mag = (self.x ** 2) + (self.y ** 2)
 other_mag = (other.x ** 2) + (other.y ** 2)
 return self_mag < other_mag

p1 = Point(1,1)
p2 = Point(-2,-3)
p3 = Point(1,-1)

use less than
print(p1<p2)
print(p2<p3)
print(p1<p3)

Output

True
False
False

Similarly, the special functions that we need to implement, to overload other
comparison operators are tabulated below.

Operator Expression Internally

Less than p1 < p2 p1.__lt__(p2)

Less than or equal to p1 <= p2 p1.__le__(p2)

Equal to p1 == p2 p1.__eq__(p2)

Not equal to p1 != p2 p1.__ne__(p2)

Greater than p1 > p2 p1.__gt__(p2)

Greater than or equal to p1 >= p2 p1.__ge__(p2)

Chapter 4: Python Advance
Constructs

1. Python Modules
What are Modules in Python?
Consider a book store, in the book store there, is a lot of section like fiction
books, physics books, financial books, language books and a lot more, and in
each section, there are 100s of books present in just one section.
From the above example, consider the book store a folder, and section are
considered to python files, and last the books in each section are called
python functions, classes or python variables.
Formal Definition of Python Module
Python module can be defined as a python file that contains python
definitions and statements. It contains python code along with python
functions, classes, or python variables. From the above example, we can
consider that each section is a python module.
In order words, we can say that the python module is a file with
the .py extension.
Features of Python Module

Modules provide us the flexibility to organize the code logically.
Modules help to break down large programs into small manageable and organized files.
It provides reusability of code.

Example:
Let's create a small module.
Create a file named example.py. The name of the file is example.py but the
name of the module is example.
Now, in the example.py file, we will create a function called print_name().
We are in the example module

def print_name(name):

 """
 This function does not return anything.
 It will just print your name.
 """
 print("Hello! {}, You are in example module.".format(name))

Now, we have created a python module example.
Now, let's try whether it works for us or not.
Now, create a second file at the same location where we have created
our example module. Let's name that file as test.py.
Input:
import example

name = "scaler academy"
example.print_name(name)

Output:
Hello! scaler academy, You are in the example module.

Types of Python Modules
There are 2 types of python modules:

1. InBuilt modules
2. User-Defined Modules

InBuilt Module:
There are several modules built-in modules available in python.
Built-In modules like: math sys os random numpy and more.
How to call a Built-In module?**
Input:
#calling modules
import math # this is math module
import random # this is a random module

now we use some of the math and random module function to check whether the modules are
working or not?
cos30 = math.cos(30)
tan10 = math.tan(10)
pie = math.pi

now using random module to generate some random numbers
random_int = random.randint(0,20)

print(f"Value of cos30 is: {cos30}")
print(f"Value of tan10 is: {tan10}")
print(f"Value of pie is: {pie}")
print(f"The random number generated using random int function: {random_int}")

Output:
Value of cos30 is: 0.15425144988758405
Value of tan10 is: 0.6483608274590866
Value of pie is: 3.141592653589793
The random number generated using random int function: 12

random.randint() function will generate a new number whenever the
function is called. It will generate a new number in the given range. i.e., [0,
20)

Variables in Module
Already discussed that modules contain functions, classes. But apart from
function and classes, modules in python also contain variables in them.
Variables like tuples, lists, dictionaries, objects, etc.
Example:
Let's create one more module variables, and saved the .py as variables.py
This is variables module
this is a function in module
def factorial(n):
 if n == 1 || n == 0:
 return 1
 else:
 return n * factorial(n-1)

this is dictionary in module
power = {
 1 : 1,
 2 : 4,
 3 : 9,
 4 : 16,
 5 : 25,
 6 : 36,
 7 : 49,
 8 : 64,
 9 : 81,
 10 : 100
}

this is list in module
alphabets = [a,b,c,d,e,f,g,h]

Create another python file, and use the variables module, to print the factorial
of a number, print the power of 6, and what is the second alphabet in the
alphabet_list.
import variables

fact_of_6 = variables.factorial(6)

power_of_6 = variables.power[6]

alphabet_2 = variables.alphabets[1]

print(f"The factorial of 6 is : {fact_of_6}")
print(f"Power of 6 is : {power_of_6}")
print(f"Second Alphabet is : {alphabrt_2}")

Output:
The factorial of 6 is 720
Power of 6 is 36
The second alphabet is b

The Import Statement
Till now, we have created 2 modules i.e., example and variables. For using
these 2 modules, we have 2 separate python to use the modules.
In both the files, we have used the import statement to use our
modules example and variables.

What is an Import Statement?
The import statement is used to import all the functionality of one module to
another. Here, we must notice that we can use the functionality of any python
source file by importing that file as the module into another python source
file.
We can import multiple modules with a single import statement, but a
module is loaded once regardless of the number of times, it has been
imported into our file.

How to Use Import Modules

For importing modules in python we need an import statement to import the
modules in a python file.
Example:
import math

print(f"The value of pie using math module is : {math.pi}")
print("The value of pi, we studied is 3.14")

Output:
The value of pie using the math module is: 3.141592653589793
The value of pi, we studied is 3.14

Using from <module_name> import statement
When we are using the import statement to import either built-in modules or
user-defined modules, that states we are importing all the
functions/classes/variables available in that modules. But if we want to
import a specific function/class/variable of that module.
We can import that specific function/class/variable, by using from
<module_name> import statement we can import that specific resource of
that module.
Syntax:
The syntax of from <module_name> import statement is:
from <module_name> import <function_name>, <class_name>, <function_name2>,
<variable_name>

Tip:
If we use '*' in place of function_name/class_name, it will import all the
resources available in that module
from <module_name> import *
this above statement will import all the available resources in the module.

Example:

Example 1
Input:
from math import *

print(pi)
print(sin(155))
print(tan(0))

Output:
3.141592653589793
-0.8733119827746476
0.0

Example 2
Input:
from math import sqrt, factorial, pi

print(sqrt(100))
print(factorial(10))
print(pi)

Output:
10.0
3628800
3.141592653589793

Python Module Search Path
In the previous sections, we have seen how to import the modules using an
import statement, but how the python search for the path of the module.
In python, when we use the import statement to import the modules. The
python interpreter looks for several locations.
After using the import statement to import modules. First, python interpreter
will check for the built-in modules. If the module is not found, then python
interpreter will look for the directories that are defined in the path sys. path.
The order of search is in below order:

At first, the interpreter looks in the current working directory.
If the module is not found in the current working directory, then the interpreter will search each
directory in the PYTHONPATH environmental variable.
If now also the module is not found, then it will search in the installation default directory.

import sys
print(sys.path)

Naming a Module
In the last 2 examples, we have created 2 python
modules variables and example, and the modules files
as variables.py and example.py. So, in this case, we get our modules names

as their file names.
So, overall we can say that we will get the name of a module by saving our
python file.

Re-Naming a Module
Python provides an easy and flexible way to rename our module with a
specific name, and then use that name to call our module resources.
For re-naming a module, we use the as keyword. The syntax is as follow:
import math as m
import numpy as np
import random as r

print(m.pi)
print(r.randint(0,10))
print(np.__version__)

Output
3.141592653589793
10
1.22.0

Reloading a Module
We can import a module only once in a session.
Suppose you using 2 modules variables and example at the same in a python
file, and the variables module is updated while you were using these
modules, and you want the updated code of that module which is updated.
Now, we know that only one time we can import a module in our session.
So, we will use the reload function which is available in the imp module to
get the updated version of our module.
import variables
import imp
imp.reload(variables)
<module 'variables' from '.\\variables.py'>

The dir() built-in Function
The dir() built-in function returns a sorted list of strings containing the names

defined by a module. The list contains the names of all the modules,
variables, and functions that are defined in a module.
import math

print(dir(math))

Output:
['__doc__', '__loader__', '__name__', '__package__', '__spec__', 'acos', 'acosh', 'asin'

2. Packages in Python and Import
Statement

Introduction
The meaning of Packages lies in the word itself. Packages do the work of
organizing files in Python. Physically a package is a folder containing sub-
packages or one or more modules (or files). They provide a well-defined
organizational hierarchy of modules in Python. Packages usually are named
such that their usage is apparent to the user. Python packages ensure
modularity by dividing the packages into sub-packages, making the project
easier to manage and conceptually clear.
To better understand what Packages in Python mean, let’s take an example
from real life. Your family is shifting to a new apartment. Your mom has
asked you to pack your books, CDs and toys so that it’s easy to unpack and
organize them in your new house. The simplest way to do this would be to
pack these items separately into three unique packages (boxes for CDs,
books and toys, respectively) and name them based on their utility.
Furthermore, you can also add sections to your book package based on the
genre of books. We can do the same thing for CDs and toys as well.
Have you come across this way of organization somewhere? The most
common example would be that of files on your phone. All your files would
be saved in a folder that could further be distinguished based on the source

(WhatsApp Documents, Downloads, etc.).
Every package in Python must contain an __init__.py file since it identifies
the folder as a package. It generally contains the initialization code but may
also be left empty. A possible hierarchical representation of the shifting items
package in the first example can be given below. Here, shifting items is our
main package. We further divide this into three sub packages: books, CDs
and toys. Each package and subpackage contains the
mandatory __init__.py file. Further, the sub packages contain files based on
their utility. Books contain two files fiction.py and non_fiction.py, the
package CDs contain music.py and dvd.py, and the package toys contain
soft_toys.py and games.py.

Importing Module From a Package in Python
Packages help in ensuring the reusability of code. To access any module or
file from a Python package, use an import statement in the Python source file
where you want to access it. Import of modules from Python Packages is
done using the dot operator (.). Importing modules and packages helps us
make use of existing functions and code that can speed up our work.
Syntax:
import module1[, module2,... moduleN]

Where import is a keyword used to import the module, module1 is the
module to be imported. The other modules enclosed in brackets are optional
and can be mentioned only when more than 1 module is to be imported.
Consider the writing package given below.

To use the edit module from the writing package in a new file test.py that you
have created, you write the following code in the test.py:
import Writing.Book.edit

To access a function called plagiarism_check() of the edit module, you use
the following code:
Writing.Book.edit.plagiarism_check()

The calling method seems lengthy and confusing, right? Another way to
import a module would be to simply import the package prefix instead of the
whole package and call the function required directly.

from Writing.Book import edit
plagiarism_check()

However, the above method may cause problems when 2 or more packages
have similarly named functions, and the call may be ambiguous. Thus, this
method is avoided in most cases.

Installing a Python Package Globally
To ensure system-wide use of the Python package just created, you need to
run the setup script. This script uses the setup() function from
the setuptools module. As a prerequisite, you need to have the latest versions
of pip and setuptools installed on your system. Pip and setuptools are usually
installed along with the Python binary installers. To upgrade the version of
pip, use the following command:
python -m pip install --upgrade pip

Once you confirm that you have the latest versions of pip and setuptools
installed, you can create a setup.py file in the main package (Writing) folder.
The setup() function that will be imported here takes various arguments like
the package's name, version, description, author, license, etc. The zip_safe
argument is used to know the mode of storage of the package (compressed or
uncompressed).
from setuptools import setup

setup(name='Writing',
version='1.0',
description='A Sample Package for all Writing Modules',
url='#',
author='username',
author_email='username@gmail.com',
license='MIT',
packages=['Writing'],
zip_safe=False)

Now to install the Writing package, open a terminal in your parent package
folder (Writing) and type in the following command:
pip install Writing

The Writing package, which contains functions to assist writing (like
count_words which is used to count the number of words in a string) will
now be available for use anywhere on the system and can be imported using
any script or interpreter by using the following commands:
import Writing
Writing.count_words(hello.txt)

This is how you create a system-wide package. If you want to create a
package that can be used by users globally, follow the following steps:

1. Organize your package well with a readme.md, license and other files.
Give an easy-to-understand and memorable name for your package.

2. Register an account on https://pypi.org.
3. Use twine upload dist/* to upload your package on PyPi and enter the

credentials you used to create the account. The package will be
uploaded directly to PyPi.

4. You can now install your Python package from PyPi using the
command python -m pip install [package_name] in your terminal.

Import Statement in Python
The files in packages that contain python code are called modules. Modules
are used to break down large code into smaller and more understandable
parts. Commonly used code (functions) can be written in the form of modules
and imported as and when needed, thus ensuring the reusability of code.
Let’s create a function prod(x,y) to multiply two numbers x and y, which are
passed as arguments to a function and store it in a module named product.py.
def prod(x, y):
 res = x*y
 return res

To import the prod function in another module or use it in the interactive
interpreter shell of Python, type:
import product

This statement does not import the module's functions into the symbol table.
To access functions of the given module, we use the dot (.) operator as
follows:
product.prod(3,5)

Output:
15

Python has a lot of in-built modules which can be accessed in the same way.
For example, to print the value of pi, we can import the math module.
Example:
import math
print(math.pi)

Output:
3.141592653589793

Importing Attributes Using the from Import
Statement in Python
We can also import individual attributes from the module. This reduces the
complexity of writing the function calls.
Syntax:
from <module_name> import <attribute_name(s)>

In the previous example, we could import pi directly from the math module
as follows:
from math import pi
print(pi)

Output:
3.141592653589793

You can import more than one attribute by separating them with commas (,).
In the below example, we import the functions pi, floor (used to find the
smallest integer greater than or equal to the given number) and fabs (used to
find the absolute value of a number) from the math package.
from math import pi, floor, fabs
print(pi)
print(floor(3.55)
print(fabs(-2.5))

Output:
3.141592653589793
4
2.5

Importing Modules Using the From Import *
Statement in Python
To import all modules' definitions, use the asterisk (*) operator.
Syntax:
from <module_name> import *

Example:
from math import *
print(pi)

Output:
3.141592653589793

Importing Modules in Python Using the Import as
Statement
You can alter how a module is called in your program by aliasing it, i.e.
giving it another name. The as operator is used for this purpose.
Syntax:
import <module_name> as <new_module_name>

Example:
import math as m
print(m.pi)

Output:
3.141592653589793

Importing Class/Functions from Module in Python
To import classes or functions from a module in Python, use the following
syntax:
from <module_name> import <class_name/function_name>

Example: To import the prod function from the math module, which is used
to calculate the product of 2 given numbers, we import prod specifically as
shown. We then can access prod() directly without using the dot (.) operator.
from math import prod
print(prod(5,15))

Output:
75

Import User-defined Module in Python
To import modules defined by the user from different code files, use the
following syntax:
import <user_defined_module_name>

Example: Consider the file example.py having a function val(x,y) defined as
follows:
def val(x, y):
 res = x+y*5

 return res

To import the val function in another module or use it in the interactive
interpreter shell of Python, type:
import example

This statement does not import the module's functions into the symbol table
(a table in python generated by the compiler used to calculate the scope of
identifiers). To access functions of the given module, we use the dot (.)
operator as follows:
example.val(3,5)

Output:
28

Importing from Another Directory in Python
Usually, when we import modules, the called modules are placed in the same
directory as the calling modules. To import modules from another directory
(collection of files in a path different from the present working directory), we
use the importlib library by calling the following import statement.
import importlib

Methods like exec_module (used to execute a module)
and module_from_spec (used to create a new module from the given
specifications) are used to satisfy the purpose.
Example: Consider two modules: upperCase.py (which is to be imported),
and final.py (the one that imports upperCase.py). The directory structure is as
follows:

PythonCode
upperCase.py
MainCodes
final.py

You will realize that upperCase.py and MainCodes are in a common
directory named PythonCode. final.py is placed in the MainCodes
subdirectory. Thus, upperCase.py and final.py do not share the same
directory.
The modules upperCase.py and final.py are defined as follows:

upperCase.py - This contains a function called upperCase which
converts the string sent as an argument to upperCase and returns the new
string. This is done by first converting the argument to a string (to ensure that

no ambiguity in the type of argument remains) and then using the upper()
method to fulfil the required purpose.
def upperCase(x):
 return str(x).upper()

final.py - This is the file where the function upperCase needs to be
imported. Since upperCase lies in another directory (as shown in the
directory structure above), we import
the importlib and importlib.util packages. A function called module_directory
contains two parameters: name_module and path representing the module's
name and the module's path to be imported, respectively. A variable P is used
to save the ModuleSpec, i.e. all the import-related information required to
load the module. It is done by calling the spec_from_file method
from importlib.util after passing the name_module and path as parameters.
Another variable import_module saves the module from the ModuleSpec
saved in the variable P. The exec_module is used to execute the
import_module module in its namespace. The import_module is then
returned by the function. A result variable is used to call the
module_directory function. The upperCase function is then called using a dot
(.) operator.
import importlib, importlib.util
def module_directory(name_module, path):
 P = importlib.util.spec_from_file_location(name_module, path)
 import_module = importlib.util.module_from_spec(P)
 P.loader.exec_module(import_module)
 return import_module
result = module_directory("result", "../upperCase.py")
print(result.upperCase('SaFa'))

Output:
SAFA

Importing Class from Another File in Python
We just saw how to import functions from files in other directories. What if
you want to import a class from another file? The importlib library is used to
import classes from another file, which can be saved in the same directory or
another.
Example: Consider 2 files: calc.py (which is to be imported), and final.py
(the one that imports calc.py). The directory structure is as follows:
PythonCode calc.py MainCodes final.py

You will realize that calc.py and MainCodes are in a common directory
named PythonCode. final.py is placed in the MainCodes subdirectory. Thus,
calc.py and final.py do not share the same directory.
The modules calc.py and final.py are defined as follows:

calc.py - This contains a class called calc which has 3 user-defined class
functions namely add(), sub() and mul() used to implement addition,
subtraction and multiplication of 2 numbers respectively. In addition to that,
calc.py also contains a function named greet() which when called, prints
‘Hello World!’ on the screen.
class calc:
 def add(self, x, y):
 return x + y
 def sub(self, x, y):
 return x - y
 def mul(self, x, y):
 return x * y

def greet():
 print("Hello World!")

final.py - This is the file where the class calc needs to be imported. Since
calc lies in another directory (as shown in the directory structure above), we
import the importlib and importlib.util packages. A function called
module_directory contains two parameters: name_module and path that
represent the module's name and the module's path to be imported
respectively. A variable P is used to save the ModuleSpec, i.e. all the import-
related information required to load the module. This is done by calling the
spec_from_file method from importlib.util after passing the name_module
and path as parameters. Another variable import_module saves the module
from the ModuleSpec saved in the variable P. The exec_module is used to
execute the import_module module in its own namespace. The
import_module is then returned by the function. A result variable is used to
call the module_directory function. An object named object is then created by
instantiating the class calc from the imported module. Different functions of
the calc class can be then called by using the dot (.) operator as shown in the
code below.
import importlib, importlib.util
def module_directory(name_module, path):
 P = importlib.util.spec_from_file_location(name_module, path)
import_module = importlib.util.module_from_spec(P)

 P.loader.exec_module(import_module)
 return import_module
result = module_directory("result", "../calc.py")
Created a class object
object = result.calc()

Calling and printing class methods
print(object.add(20,5))
print(object.sub(20,5))
print(object.mul(20,5))

Calling the explicitly created function
result.greet()

Output:
25
15
100
Hello World!

3. Python Collection Module
Introduction to Modules
The Modules in Python are simply the ".py" or python files that contain
Python code that can contain code for specific inbuilt function and can be
imported into some other Python program to make use of inbuilt functions
easier.
A module can be thought as a code library or a file containing a group of
methods and functions that you want to include in your python program. We
can use modules to group together related functions, classes, or code blocks
in the same file. As a result, splitting large Python code blocks into modules
comprising code is regarded a best practise for building larger Python code.

Collection Module
The collection Module in Python has various types of containers which are
available to use easily by importing them into your program using the
collection module.

A Container is a type of object that can be used to hold multiple items while
simultaneously providing a way to access and iterate over them, such as a
Tuple or a list.
There are different containers which comes under collections module:

namedtuple()
OrderedDict()
defaultdict()
Counter()
deque()
Chainmap

Now lets talk about all these Containers in detail.
namedtuple()
The collections module's namedtuple() function is used to return a tuple with
names for each of the tuple's positions. Each value of the tuple can be called
using their corresponding names. Regular tuples have a difficult time
remembering the index of each field of a tuple object. The namedtuple was
created to address this problem, and it solves the index problem for regular
tuple objects.
for importing and using the namedtuple() we use the below syntax:
Syntax:
from collections import namedtuple

name = namedtuple('name', 'x, y')

After importing, you can simply just initialize the object and can use it
according to the code.
namedTuple function takes the object name as its first parameter followed by
the names as its positions. First define the structure of namedtuple() object
using the namedtuple() function with names as its positions and initialize the
tuple object by passing the values to the initialzed object.
Lets see some examples related to namedtuple() function.
Example 1: First we will define the structure of namedtuple() object using
the namedtuple() function with names as its positions.
We will initialize the tuple object by passing the values to the initialzed
object.
Now you can use the initialised object to get the values by using the names as

the tuple’s positions.
Importing the namedtuple
from collections import namedtuple

Defining the name of the object and positions for the object
nameTup = namedtuple('nameTup', 'value1, value2, value3')
myTuple = nameTup('Scaler', 'Topics', 'Python')

Printing the values
print(myTuple.value1)
print(myTuple.value2)
print(myTuple.value3)

Output: The program will print the values from the tuple object by using the
names as their positions
Scaler
Topics
Python

Example 2: In this example, we will make use of a list to create the tuple and
we will access the values both by using indexes and the names.
Importing the namedtuple
from collections import namedtuple

Defining the positions for the object
tuple1 = namedtuple('tuple1', ['name', 'address', 'profession'])
myTuple = tuple1('ABC', 'Street No.1 ABC complex', 'Teacher')

Printing the values using index of the list
print('Using the indexes to get the values')

print('\nName is :', myTuple[0])
print('Address is :', myTuple[1])
print('Profession is :', myTuple[2])

Printing the values using names as positions
print('\nUsing the names to get the values')

print('\nName is :', myTuple.name)
print('Address is :', myTuple.address)
print('Profession is :', myTuple.profession)

print('\nSimply printing the tuple')

print('\n',myTuple)

using a list for creating the tuple hepls us to access the values of the tuple by
both using indexes and the names.

Output: The program will print the values from the tuple object by using the
indexes of the list passed and also by the names as their positions.
Using the indexes to get the values
Name is: ABC
Address is: Street No.1 ABC complex
Profession is: Teacher
Using the names to get the values
Name is: ABC
Address is: Street No.1 ABC complex
Profession is: Teacher
Simply printing the tuple
tuple1(name='ABC', address='Street No.1 ABC complex', profession='Teacher')
OrderedDict()

OrderedDict is a dictionary in which the keys are always inserted in the same
order. The order of the keys in a dictionary is preserved if they are inserted in
a specific order. Even if the value of the key is changed later, the position
will not change.
So if we will iterate over the Dictionary it will always print out the values in
the order they are inserted.
for importing the OrderedDict() we use the below syntax:
Syntax:
from collections import OrderedDict

myDict = OrderedDict()

After importing, you can simply just initialize the object and can use it
according to the code.
First define the structure using the OrderedDict() function and initialize the
dictionary object by passing the values according to the keys.
Further you can use inbuilt function for dictionary like:

d.clear()
d.get([,])
d.items()
d.keys()
d.values()
d.pop([,])
d.popitem()
d.update()

Lets see some examples related to OrderedDict() function.
Example 1:
First we will define the structure using the OrderedDict() function and we
will initialize the dictionary object by passing the values according to the
keys.
Now you can use the dictionary to get the key-values.
Importing the dictionary
from collections import OrderedDict

Initializing the dictionary
myDict = OrderedDict()

Adding the values
myDict['key1'] = 'value1'
myDict['key2'] = 'value2'
myDict['key3'] = 'value3'
myDict['key4'] = 'value4'

Printing the dictionary
print(myDict)

We have simply initiated 4 keys and values in the ordered dictionary.
Output:
You can see that the order is preserved when we print the dictionary.
OrderedDict([('key1', 'value1'), ('key2', 'value2'), ('key3', 'value3'), ('key4', 'value4')])

Example 2:
In this example, we will make an OrderedDict and then we will change the
key values but the original order will be maintained.
Importing the dictionary
from collections import OrderedDict

Initializing the dictionary
myDict = OrderedDict()

Adding the values
myDict['A'] = '1'
myDict['B'] = '2'
myDict['C'] = '3'
myDict['D'] = '4'

Changing the values
myDict['A'] = '5'

Ordering will be same

print(myDict)

Changing the value of key "A" from 1 to 5 will not affect the ordering of the
keys in the dictionary.
Output:
You can see that the order is preserved even after changing the key-value of
the dictionary.

OrderedDict([('A', '5'), ('B', '2'), ('C', '3'), ('D', '4')])
defaultdict()

In Python, a dictionary is an unordered collection of data values that can be
used to store data values in the same way that a map can. The Dictionary has
a key-value pair and the key must be unique and immutable and it throws
error when we try to access non-existent key. The only difference between
defaultdict() and simple Dictionary is that when you try to access a non-
existent key in defaultdict(), it does not throw an exception or a key error.
For importing defaultdict() we use the below syntax:
Syntax:
from collections import defaultdict

mydict = defaultdict()

After importing, you can simply just initialize the object and can use it
according to the code.
First define the structure using the defaultdict() function and initialize the
dictionary object by passing the values according to the keys.
Further you can use inbuilt function for dictionary like:

d.clear()
d.get([,])
d.items()
d.keys()
d.values()
d.pop([,])
d.popitem()
d.update()

Lets see some examples related to defaultdict() function.
Example 1:
First we will define the structure using the defaultdict() function and we will

initialize the dictionary object by passing the values according to the keys.
Now you can use the dictionary to get the key-values.
Importing the dictionary
from collections import defaultdict

Initializing the dictionary
defDict = defaultdict()

Adding the values
defDict['k1'] = 'v1'
defDict['k2'] = 'v2'
defDict['k3'] = 'v3'
defDict['k4'] = 'v4'

Printing the dictionary
print(defDict)

We have simply initiated 4 keys and values in the ordered dictionary.
Output:
This example simply prints the dictionary values.
defaultdict(None, {'k1': 'v1', 'k2': 'v2', 'k3': 'v3', 'k4': 'v4'})

Example 2:
In this example, we will try to access the key which is not present in the
dictionary but the defaultdict will not give any key error.
Importing the dictionary
from collections import defaultdict

Initializing the dictionary
dic = defaultdict(int)

Adding the values
dic[1] = 'a'
dic[2] = 'b'
dic[3] = 'c'

Printing the dictionary
print(dic[4])

defaultdict is advantageous in the conditions where inexisting keys are
accessed as error does not occurs in those cases.
Output:
While initializing the defaultdict, if we don't pass an object reference such as
int, bool, it will result in a key error and won't be able to deduce the fallback
default value in such scenarios.

In this case, we have set default value as int so in case of missing key it will
return 0.
You can see that when we tried to access the value 4 in the dictionary, it just
returned 0 instead of returning KeyError.

0
Counter()
A counter is a built-in data structure that counts the number of times each
value in an array or list appears.
Hashable objects are counted using the Counter subclass. counter() object
constructs an iterable hash table when called.
For importing Counter() we use the below syntax: Syntax:
from collections import Counter

After importing, you can simply just initialize the Counter object and can use
it according to the code. Lets see some examples related to Counter()
function.
Example 1:
First we will initialize the structure using the Counter() function and we will
pass the list in the counter object and a hashable object will be created
Now you can get the key-values of the hash.
Importing the Counter
from collections import Counter

Making a list
l = [1,1,1,1,1,2,2,3,3,4]

Making the counter Object
c = Counter(l)
print(c)

Counter object makes a dictionary of all distinct keys and their counter
values.
Output:
This example simply prints the counter object created. Counter({1: 5, 2: 2, 3: 2, 4: 1})

Example 2:
we will pass the list containing the string values and hence the dictionary of
string as keys will be created.

Now you can get the key-values of the hash.
Importing the Counter
from collections import Counter

Making a list
stringList = ['a', 'b', 'c', 'c', 'c', 'b', 'b', 'b', 'a', 'a', 'a', 'a']

Making the counter Object
c = Counter(stringList)
print(c)

Output:
This example simply prints the counter object created. Counter({'a': 5, 'b': 4, 'c': 3})

deque()
Deque is a more efficient variant of a list for adding and removing items
easily. It can add or remove items from the beginning or the end of the list.
It is a double ended queue which has insertion and deletion operations
available at both the ends.
For importing deque() we use the below syntax:
Syntax:
from collections import deque

deq = deque()

After importing, you can simply just initialize the deque() object and can use
it according to the code.
After importing, you can simply just initialize the object and pass the list in
the deque object.
Further you can use inbuilt function for deque like:

append(): append to right of deque()
appendleft(): append to left of deque()
pop(): pop an element from the right of the deque()
popleft(): pop for the left of deque()
index(ele, beg, end): get the index of the element from deque()
insert(i, a): insert at a particular index of the deque()
remove(): remove an element from deque
count(): count occurences of an element in deque()
reverse(): reverse the deque()
rotate(): rotate the deque() by specified number. Lets see some examples related to deque().

Example:

First we will initialize the deque object and we will pass the list in the deque
object.
Now we will be applying the removal and insertion on both the ends of the
deque.
We added the items at both ends using append() and appendleft() function
and then printed it.
Now finally we have removed the items from both the ends using pop() and
popleft() function.
Importing the deque
from collections import deque

Initialization
l = ['Hi', 'This', 'is', 'Scaler']
myDeq = deque(l)

Printing the deque
print("Original Deque is :", myDeq)

Inserting at both the ends
myDeq.append("!!")
myDeq.appendleft("!!")

Printing the updated deque
print("Deque after adding to both the ends is :",myDeq)

Removing from both the ends
myDeq.pop()
print("Deque after removal from start is :",myDeq)

myDeq.popleft()
print("Deque after removal from beginning is :",myDeq)

myDeq.insert(1, "New")
print("Deque after insertion is :",myDeq)

myDeq.remove("New")
print("Deque after removal of value New is :",myDeq)

print("count of Scaler in deque is : ", myDeq.count("Scaler"))

myDeq.reverse()
print("Deque after reversing is :",myDeq)

myDeq.rotate(1)
print("Deque after rotation by 1 element is :",myDeq)

We have performed every above mentioned functions on our deque.
Output:
First simply a list is passed in the deque() function, Then we added the items
at both ends using append() and appendleft() function and then printed it.
Now finally we have removed the items from both the ends using pop() and
popleft() function.

Original Deque is: deque(['Hi', 'This', 'is', 'Scaler'])
Deque after adding to both the ends is: deque(['!!', 'Hi', 'This', 'is', 'Scaler', '!!'])
Deque after removal from start is:** deque(['!!', 'Hi', 'This', 'is', 'Scaler'])**
Deque after removal from beginning is: deque(['Hi', 'This', 'is', 'Scaler'])
Deque after insertion is: deque(['Hi', 'New', 'This', 'is', 'Scaler'])
Deque after removal of value New is: deque(['Hi', 'This', 'is', 'Scaler'])
count of Scaler in deque is: 1
Deque after reversing is: deque(['Scaler', 'is', 'This', 'Hi'])
Deque after rotation by 1 element is: deque(['Hi', 'Scaler', 'is', 'This'])

Chainmap
ChainMap returns a list of dictionaries after combining them and chaining
them together. ChainMaps can encapsulate a multiple dictionaries into a
single object or unit and has no limitations for the number of dictionaries to
contain.
For importing Chainmap() we use the below syntax:
Syntax:
from collections import Chainmap

cm = chainmap(dic1, dic2)

After importing, you can simply just initialize the Chainmap() object by
passing the dictionaries you want to encapsulate.
Further you can use inbuilt function for chainmap like:

keys(): it is used to get all the keys of chainmap
values(): it is used to get all the values of chainmap
maps(): it is used to get all the keys and their particular values in the object
newchild(): It adds a new dictionary at the beginning of the chainmap
reversed(): It is used to reverse the chainmap object.

Lets see some examples related to Chainmap().

Example:
First we will initialize the Chainmap object and we will pass all the
dictionaries that we wanna encapsulate in the chainmap object.
Finally we will print the final chainmap object.
Importing the deque
from collections import ChainMap

Dictionary 1
dict1 = { 'k1' : 1, 'k2' : 2, 'k3': 3 }
Dictionary 2
dict2 = { 'k4' : 4 }

Making the ChainMap
finalChainMap = ChainMap(dict1, dict2)

Printing the ChainMap
print(finalChainMap)

print("All the keys of the chainmap is :", list(finalChainMap.keys()))

print("All the values the chainmap is :", list(finalChainMap.values()))

print("All the keys-value pairs of the chainmap is :", finalChainMap.maps)

print("All the keys of the chainmap is :", list(finalChainMap.keys()))

dict3 = { 'k5' : 5 }

chain1 = finalChainMap.new_child(dict3)
print("chainmap after addition at beginning is :", chain1)

print("Reversed chainmap is :", list(reversed(chain1.maps)))

Output:
We Simply Just printed out the chainMap object after encapsulating the
dictionaries to the Object.
ChainMap({'k1': 1, 'k2': 2, 'k3': 3}, {'k4': 4})
All the keys of the chainmap is: ['k2', 'k3', 'k1', 'k4']
All the values the chainmap is: [2, 3, 1, 4]
All the keys-value pairs of the chainmap is: [{'k1': 1, 'k2': 2, 'k3': 3}, {'k4': 4}]
All the keys of the chainmap is: ['k2', 'k3', 'k1', 'k4']
chainmap after addition at beginning is: ChainMap({'k5': 5}, {'k1': 1, 'k2': 2, 'k3': 3}, {'k4': 4})

Reversed chainmap is: [{'k4': 4}, {'k1': 1, 'k2': 2, 'k3': 3}, {'k5': 5}]

4. Regular Expression in Python
Regular expression is a sequence of characters that forms a pattern which is
mainly used to find or replace patterns in a string. These are supported by
many languages such as python, java, R etc.Most common uses of regular
expressions are:

1. Finding patterns in a string or file.(Ex: find all the numbers present in a
string)

2. Replace a part of the string with another string.
3. Search substring in string or file.
4. Split string into substrings.
5. Validate email format.

We will see examples of above mentioned uses in detail.

RegEx Module
In python we have a built-in package called re to work with regular
expressions. We can use it as shown in the example below:
import re
text = '''Alan Turing was a pioneer of theoretical computer science and artificial intelligence. He was
born on 23 June 1912 in Maida Vale, London'''
res = re.search("^Alan.*London$",text)
if(res):
 print("We have a match!")
else:
 print("We don't have a match")

Output:
We have a match!

This will give “We have a match!” as output as the given string starts with
Turing and ends with London. We will see how this works later in the article.

Python RegEx Expressions Functions
The ‘re’ package in python provides various functions to work with regular
expressions. We will discuss some commonly used ones.

S
No

Function Description

1 findall(pattern,string) This matches all the occurrences of the pattern present in the string.

2 search(pattern,string) This matches the pattern which is present at any position in the string. This will
match the first occurrence of the pattern.

3 split(pattern,string) This splits the string on the given pattern.
4 sub(pattern,rep_substring,string) This replaces one or more matching pattern in the string with the given substring.

Meta Characters
These are the characters which have special meaning. The following are some
of the meta characters with their uses.
S

No
Meta

character Description

1 [](Square
brackets) This matches any single character in this bracket with the given string.

2 . (Period) This matches all the characters except the newline. If we pass this as a pattern in the findall() function it
will match with all the characters present in the string except newline characters.

3 ^ (Carret) This matches the given pattern at the start of the string.This is used to check if the string starts with a
particular pattern or not.

4 $ (Dollar) This matches the given pattern at the end of string. This is used to check if the string ends with a pattern
or not.

5 * (Star) This matches 0 or more occurrences of the pattern to its left.

6 + (Plus) This matches 1 or more occurrences of the pattern to its left.

7 ? (Question
mark) This matches 0 or 1 occurrence of the pattern to its left.

8 { } (Braces) This matches the specified number of occurrences of pattern present in the braces.

9 (Alternation) This works like ‘or’ condition. In this we can give two or more patterns. If the string contains at least
one of the given patterns this will give a match.

10 () (Group) This is used to group various regular expressions together and then find a match in the string.

11 \ (Backslash) This is used to match special sequences or can be used as escape characters also.

Special Sequences in Python RegEx
S
No Sequence Description

1 \A This gives a match if the characters to the right of this are at the beginning of the string.

2 \b This gives a match if the characters to the right are at the beginning of a word or the characters to the left
are at the end of a word in the given string.

3 \B This gives a match if the characters to the right or left of \B are not present at the beginning or end of a
word in the given string.

4 \d This gives a match if the string contains a digit.
5 \D This gives a match if the string contains only non digit characters.
6 \s This gives a match if the string contains a white space character.
7 \S This gives a match if the string contains only characters other than white space character.
8 \w This gives a match if the string contains any character in a-z, A-Z, 0-9 and underscore(_).

9 \W This gives a match if the string contains characters other than a-z, A-Z, 0-9 and underscore(_).
10 \Z This gives a match if the characters to the left of \Z are present at the end of the string.

Examples for each sequence are given below
import re
text = '''Alan Turing was born on 23 June 1912 in London.'''
Example for \A
res = re.findall('\AAlan',text)
print("Result for \A = ", res)
print("-"*79)
Example for \b
res = re.findall(r'\bLon',text)
print("Result for \\b = ", res)
print("-"*79)
Example for \b
res = re.findall(r'ring\b',text)
print("Result for \\b = ", res)
print("-"*79)
Example for \B
res = re.findall('\Bon',text)
print("Result for \B = ", res)
print("-"*79)
Example for \d
res = re.findall('\d',text)
print("Result for \d = ", res)
print("-"*79)
Example for \D
res = re.findall('\D',text)
print("Result for \D = ", res)
print("-"*79)
Example for \s
res = re.findall('\s',text)
print("Result for \s = ", res)
print("-"*79)
Example for \S
res = re.findall('\S',text)
print("Result for \S = ", res)
print("-"*79)
Example for \w
res = re.findall('\w',text)
print("Result for \w = ", res)
print("-"*79)
Example for \W
res = re.findall('\W',text)
print("Result for \W = ", res)
print("-"*79)
Example for \Z
res = re.findall('London.\Z',text)

print("Result for \Z = ", res)

Output:
Result for \A = ['Alan']

Result for \b = ['Lon']

Result for \b = ['ring']

Result for \B = ['on', 'on']

Result for \d = ['2', '3', '1', '9', '1', '2']

Result for \D = ['A', 'l', 'a', 'n', ' ', 'T', 'u', 'r', 'i', 'n', 'g', ' ', 'w', 'a', 's', ' ', 'b', 'o', 'r', 'n', ' ', 'o', 'n', ' ', ' ', 'J',
'u', 'n', 'e', ' ', ' ', 'i', 'n', ' ', 'L', 'o', 'n', 'd', 'o', 'n', '.']

Result for \s = [' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ']

Result for \S = ['A', 'l', 'a', 'n', 'T', 'u', 'r', 'i', 'n', 'g', 'w', 'a', 's', 'b', 'o', 'r', 'n', 'o', 'n', '2', '3', 'J', 'u', 'n', 'e',
'1', '9', '1', '2', 'i', 'n', 'L', 'o', 'n', 'd', 'o', 'n', '.']

Result for \w = ['A', 'l', 'a', 'n', 'T', 'u', 'r', 'i', 'n', 'g', 'w', 'a', 's', 'b', 'o', 'r', 'n', 'o', 'n', '2', '3', 'J', 'u', 'n', 'e',
'1', '9', '1', '2', 'i', 'n', 'L', 'o', 'n', 'd', 'o', 'n']

Result for \W = [' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', '.']

Result for \Z = ['London.']

Sets
A set is a set of characters inside the square bracket which is treated as a
pattern. Given below are some examples of set:
No Set Description
1 [abcd] Gives a match if the string contains a,b,c or d.
2 [a-z] Gives a match if the string contains any character from a to z.
3 [A-Z] Gives a match if the string contains any character from A to Z.
4 [0-9] Gives a match if string contains digits from 0 to 9

5 [a-zA-Z0-
9] Gives a match if any of the above conditions holds true.

6 [^a-zA-Z] Gives a match if the string doesn’t contain any alphabet.

7 [%&$#@*] Gives a match if the string contains any of these characters. When these characters are in square brackets
they are treated as normal characters.

findall(pattern, string)
This function is the same as search but it matches all the occurrences of the
pattern in the given string and returns a list. The list contains the number of
times it is present in the string.

Ex: The following example will make it clear.
import re
text = '''Alan Turing was a pioneer of theoretical computer science and artificial intelligence. He was
born on 23 June 1912 in Maida Vale, London'''
res = re.findall('Turing',text)
print("Result = {}".format(res))

Output:
Result = ['Turing']

In the output you can clearly see that the function finds a match for the
pattern ‘Turing’’. It is advisable to use findall while searching for a pattern in
a string as it covers both match and search functions.

search(pattern, string)
This is the same as match function but this function can search patterns
irrespective of the position at which the pattern is present. The pattern can be
present anywhere in the string. This function matches the first occurrence of
the pattern.
Ex: The following example shows how to use the function
import re
text = '''Alan Turing was a pioneer of theoretical computer science and artificial intelligence. He was
born on 23 June 1912 in Maida Vale, London'''

res = re.search('Turing',text)
print("Result = {} and start,end position = {}".format(res,res.span()))

Output:
Result = <re.Match object; span=(5, 11), match='Turing'> and start,end position = (5, 11)

The function returns re.Match object if pattern if present in the string else
returns None.
We can also get the start and end positions of matching pattern by calling
span method on the re.Match object.

split(pattern, string)
This function splits a string on the given pattern. This returns the result as a
list after splitting. The example given below will make it clear.
import re
text = '''Alan Turing was a pioneer of theoretical computer science and artificial intelligence. He was
born on 23 June 1912 in Maida Vale, London'''

res = re.split("a", text)
print("Result = {}".format(res))

Output:
Result = ['Al', 'n Turing w', 's ', ' pioneer of theoretic', 'l computer science ', 'nd ', 'rtifici', 'l
intelligence. He w', 's born on 23 June 1912 in M', 'id', ' V', 'le, London']

sub(pattern, repl, string)
This function replaces a pattern with the given substring in a given string. In
the example below we will replace the word ‘theoretical’ with ‘practical’.
import re
text = '''Alan Turing was a pioneer of theoretical computer science and artificial intelligence. He was
born on 23 June 1912 in Maida Vale, London'''

res = re.sub('theoretical','practical',text)
print("Result = {}".format(res))

Output:
Result = Alan Turing was a pioneer of practical computer science and artificial intelligence. He was
born on 23 June 1912 in Maida Vale, London

In the output we can see that the function replaced the pattern ‘theoretical’
with the given substring ‘practical’’. This function will replace all the
patterns present in the string with the given substring.
Match Object
Whenever we call any regex method/function it searches the pattern in the
string. If it finds a match then it returns a match object else return None. We
will see how the match object looks like and how to access methods and
properties of that object. Let’s search a pattern in a string and print the match
object.
import re
text = '''Alan Turing was a pioneer of theoretical computer science and artificial intelligence. He was
born on 23 June 1912 in Maida Vale, London'''
Searches the pattern in the string.
res = re.search('computer',text)
print("Match object = {}".format(res))

Output:
Match object = <re.Match object; span=(41, 49), match='computer'>

In the example above we can see that if a match happens then the re.Match
object is returned. If there is no match then None will be returned.
Now we will see the attributes and properties of re.Match objects one by one.
They are as follows:

match.group(): This returns the part of the string where the match was
there.
match.start(): This returns the start position of the matching pattern in
the string.
match.end(): This returns the end position of the matching pattern in
the string.
match.span(): This returns a tuple which has start and end positions of
matching pattern.
match.re: This returns the pattern object used for matching.
match.string: This returns the string given for matching.
Using r prefix before regex: This is used to convert the pattern to raw
string.This means any special character will be treated as normal
character. Ex: \ character will not be treated as an escape character if
we use r before the pattern.

Now we will see examples for each of the functions mentioned above.
import re
text = '''Alan Turing was a pioneer of theoretical computer science and artificial intelligence. He was
born on 23 June 1912 in Maida Vale, London'''
Searches the pattern in the string.
res = re.search('computer',text)
print("Match object = {}".format(res))
print("--"*30)
print("group method output = ",res.group())
print("--"*30)
print("start method output = ",res.start())
print("--"*30)
print("end method output = ",res.end())
print("--"*30)
print("span method output = ",res.span())
print("--"*30)
print("re attribute output = ",res.re)
print("--"*30)
print("string attribute output = ",res.string)
print("--"*30)

Example of using r as prefix.
Searching for \\ in the following string
text = r'search \\ in this string'
searching using r as prefix
res = re.search(r"\\",text)
print("With r as prefix = ",res)

Output:
Match object = <re.Match object; span=(41, 49), match='computer'>
--
group method output = computer
--
start method output = 41
--
end method output = 49
--
span method output = (41, 49)
--
re attribute output = re.compile('computer')
--
string attribute output = Alan Turing was a pioneer of theoretical computer science and artificial
intelligence. He was born on 23 June 1912 in Maida Vale, London
--
With r as prefix = <re.Match object; span=(7, 8), match='\\'>

If there is no match then instead of re.Match object, it will return ‘none’.
The concepts that you have learned above can be used to verify email
address, phone number, address or names of colleges, institutes etc.

5. Python Datetime
Introduction to Python Datetime
Ever wondered how does the banking system manages date and time, like
how do they calculate the remaining tenure of a loan. Well, the answer lies in
the functions of python datetime module of python. Read along to know
more.
DateTime module is provided in Python to work with dates and times. In
python DateTime, is an inbuilt module rather than being a primitive data
type, We just have to import the module mentioned above to work with dates
as date object.
There are several classes in the datetime python module of python which help
to deal with the date & time. Moreover, there are so many functions of these
classes from which we can extract the date and time.

How to Use Date and Datetime Class?

Firstly, you need to import the python datetime module of python using the
following line of code, so that you can use its inbuilt classes to get current
date & time etc.
import datetime

1. Now, we can use the date class of the datetime module. This class helps
to convert the numeric date attributes to date format in the form
of YYYY-MM-DD. This class accepts 3 attributes Year, Month & Day
in the following order (Year, Month, Day).

Syntax
import datetime

 var1 = datetime.date(YYYY, MM, DD)

This will convert the numeral date to the date object

Example
import datetime

 userdate = datetime.date(2021, 10, 20)

 print('userdate: ', userdate)
 print('type of userdate: ', type(userdate))

Output:
success
 userdate: 2021-10-20
 type of userdate: <class 'datetime.date'>

Explanation of code
In the above code we imported the python datetime library.

We then saved the date time object into the variable.
Then we print the variable and also the type of variable whose
output is down below.

Now, we can use the datetime python class of the datetime module.
This class helps to convert the numeric date & time attributes to
date-time format in the form of YYYY-MM-DD hr:min:s:ms.

This class accepts 7 attributes Year, Month, Day, Hour, Minutes, Seconds,
MilliSeconds in the following order (Year, Month, Day, Hour, Minutes,
Seconds, MilliSeconds).
Syntax
 import datetime

 var1 = datetime.datetime(YYYY, MM, DD, hr, min, s, ms)

 # This will convert the numeral date to the datetime object in the form of
 YYYY-MM-DD hr:min:s:ms.

Example
import datetime

 userdatetime = datetime.datetime(2019, 5, 10, 17, 30, 20, 154236)

 print('userdatetime: ', userdatetime)
 print('type of userdatetime: ', type(userdatetime))

Output:
success
 userdatetime: 2019-05-10 14:30:20.154236
 type of userdatetime: <class 'datetime.datetime'>

Explanation of code
In the above code we imported the datetime library.
We then saved the date time object into the variable.
Then we print the variable and also the type of variable whose output is
down below.

Classes of DateTime Python Module
Date
Now, we can use the date class of the datetime module.
This class helps to convert the numeric date attributes to date format in the
form of YYYY-MM-DD.
This class accepts 3 attributes Year, Month & Day in the following order
(Year, Month, Day).
Syntax
import datetime

 var1 = datetime.date(YYYY, MM, DD)

 # This will convert the numeral date to the date object

Example
import datetime

 userdate = datetime.date(2021, 9, 15)

 print('userdate: ', userdate)
 print('type of userdate: ', type(userdate))

Output
userdate: 2021-09-15
type of userdate: <class 'datetime.date'>

Explanation of code
In the above code we imported the datetime library.
We then saved the date time object into the variable.
Then we print the variable and also the type of variable whose output is
down below.

As we can see that we have changed the numeral data to the datetime object
and the same can be verified by the type of object printed below.
Time
Now, we can use the time class of the python datetime module.
Time class returns the local time of the area where user is present.
Time class accepts 5 attributes hour, minute, second, microsecond & fold in
the following order (hour, minute, second, microsecond, fold).
All the above mention attributes are optional, but the initial value of all the
attributes are 0.
Points to Remember About Time Class

If we don't pass any attribute in time class then it will return the default
time which is 00:00:00.
By specifying particular attribute in the time class then it will set its
value and give the time as per the user requirement.

Syntax
import datetime

returns the time with all it's value as 0 like 00:00:00
var1 = datetime.time()

returns the time with the value which are specified by the user in the attributes
var2 = datetime.time(hour=?, minute=?, second=?, microsecond=?)

Example
import datetime

time1 = datetime.time()
print('without passing any attribute: ', time1)

time2 = datetime.time(hour=12, minute=55, second=50)
print('by passing hour, minute and second attributes: ', time2)
time1 = time1.replace(hour=17)
print('by replacing the hour attribute in time1: ', time1)

time2 = time2.replace(minute=00)
print('by replacing the minute attribute in time2: ', time2)

Output
without passing any attribute: 00:00:00
by passing hour, minute and second attributes: 12:55:50
by replacing the hour attribute in time1: 17:00:00
by replacing the minute attribute in time2: 12:00:50

Explanation of Code
In the above code we imported the python datetime library.
We then saved two different type of time object into the variable (one
having no attributes and other with some attributes).
Then we used replace() to change the value of above generated time.
Then we print the variable to get different times according to the
attributes we passed in the time class.

Datetime
Now, we can use the datetime python class of the datetime module. This class
helps to convert the numeric date & time attributes to date-time format in the
form of YYYY-MM-DD hr:min:s:ms.
This class accepts 7 attributes Year, Month, Day, Hour, Minutes, Seconds,
MilliSeconds in the following order (Year, Month, Day, Hour, Minutes,
Seconds, MilliSeconds).
Syntax
 import datetime

 var1 = datetime.datetime(YYYY, MM, DD, hr, min, s, ms)

 # This will convert the numeral date to the datetime object in the form of
 YYYY-MM-DD hr:min:s:ms.

Example
import datetime

userdatetime = datetime.datetime(2021, 9, 15, 20, 55, 20, 562789)

print('userdatetime: ', userdatetime)
print('type of userdatetime: ', type(userdatetime))

Output
userdatetime: 2021-09-15 20:55:20.562789
type of userdatetime: <class 'datetime.datetime'>

Explanation of Code
In the above code we imported the datetime library.
We then saved the date time object into the variable.
Then we print the variable and also the type of variable whose output is
down below.

As we can see that we have changed the numeral python datatime to the
datetime object and the same can be verified by the type of object printed
below.

Timedelta
Now, we can use the timedelta class of the datetime module.
This class helps to find the difference between the 2 dates/time which is
provided by the datetime.timedelta class. No matter whether the difference of
dates/time is positive or negative.
This class accepts several arguments like weeks, days, hours, minutes,
seconds, milliseconds and microseconds. And, the default value of these
arguments is zero.
Syntax
 import datetime

 var1 = datetime.timedelta(weeks=?, days=?, hours=?, minutes=?, seconds=?,
 milliseconds=?, microsecond=?)

 # This will return the exact date & time object by using all the attributes
 used by the user.

Example
import datetime

data1= datetime.timedelta(days=1, hours=23, minutes=30)
print('data1: ', data1)

data2= datetime.timedelta(days=4, hours=11, minutes=30)
print('data2: ', data2)

difference = data2-data1
print('difference between data2 and data1: ', difference)

Output
data1: 1 day, 23:30:00
data2: 4 days, 11:30:00
difference between data2 and data1: 2 days, 12:00:00

Explanation Of Code
In the above code we imported the datetime library.
We then saved the date time object into the variable in the form of
timedelta format.
Then we print the print the difference between the 2 days which are
generated above.

As we can see that we have printed the difference of the 2 dates below.

Tzinfo
The function .now() that we are using to get the current system time does not
have any information about the time zones. In most of the cases there is a
need of time zone information. So, in such cases the tzinfo abstract class is
used. As it is an abstract class, so it cann't be instantiated directly.
The constructors of datetime object accepts the instances of Tzinfo class.

Naive & Aware Datetime Objects
Naive Datetime Object: The datetime object which doesn't have any
information regarding time zone is considered as naive datetime object.
The tzinfo value for naive datetime object is NONE.
Aware Datetime Object: The datetime object which has information
regarding time zone is considered as aware datetime object.

Timezone
A time zone represents the standard time which depends upon which part of
the world is considered.
datetime.now() returns the local time of the part of world where the user is
present. The local time has no relation/information regarding the timezone of
that particular region.
We can import one more inbuilt module pytz for using the time zone of
different part of the world. Import the module using the below mentioned

code:
import pytz

Basics of pytz Library
1. We used pytz.utc to get the UTC time into the datetime.datetime.now()

function. The +00:00 at the end of the output of UTC time zone
represents the UTC offset.

2. We used pytz.timezone('US/CENTRAL') to get the 'US/CENTRAL'
time into the datetime.datetime.now() function. The -05:00 at the end of
the output of UTC time zone represents the UTC offset of the
'US/CENTRAL' region.

Syntax
import datetime

#added another module for using different time zones.
import pytz

#return the local time of that area
var1 = datetime.now()

return the standard utc time
var2 = datetime.now(pytz.utc)

return the us/central timezone
var3 = datetime.now(pytz.timezone('US/CENTRAL'))

Example
import datetime
import pytz

localtime= datetime.datetime.now()
print('local time: ', localtime)

utctime = datetime.datetime.now(pytz.utc)
print('UTC time zone: ', utctime)

ustime = datetime.datetime.now(pytz.timezone('US/CENTRAL'))
print('US time zone: ', ustime)

Output
local time: 2021-10-15 01:37:39.603581
UTC time zone: 2021-10-14 20:07:39.603716+00:00
US time zone: 2021-10-14 15:07:39.626474-05:00

Explanation of Example
In the above code we have imported the datetime and pytz libraries.
We then saved different date time object on the basis of time zones into
the variable.
Then we print the variables whose output is down below.

Date Class
.date()
This class helps to convert the numeric date attributes to date format in the
form of YYYY-MM-DD.
This class accepts 3 attributes Year, Month & Day in the following order
(Year, Month, Day).
Syntax
 import datetime

 var1 = datetime.date(YYYY, MM, DD)

 # This will convert the numeral date to the date object

Example
import datetime

dateByUser = datetime.date(2018, 12, 31)
print('dateByUser: ', dateByUser)
print('type of dateByUser: ', type(dateByUser))

Output
dateByUser: 2018-12-31
type of dateByUser: <class 'datetime.date'>

Explanation of Example
In the above code we have imported the datetime library.
We then saved the date time object into the variable.
Then we print the variable and also the type of variable whose output is
down below.

As we can see that we have changed the numeral datatime to the datetime
object and the same can be verified by the type of object printed below.

.today()

This function of Date class returns the today's date on the output screen in the
format of 'YYYY-MM-DD'.
Example
import datetime

print("today's date: ", datetime.date.today())

Output
today's date: 2021-10-16

.min
The .min function returns the earliest representable date. This uses 3
attributes 'MinYear', 'Month' & 'Day' in the following order
(datetime.MINYEAR, Month, Day).
Example
import datetime

print('earliest year which can be represented: ',
 datetime.date(datetime.MINYEAR, 12, 1))

Output
earliest year which can be represented: 0001-12-01

.max
The .max function returns the latest representable date. This uses 3 attributes
'MaxYear', 'Month' & 'Day' in the following order (datetime.MAXYEAR,
Month, Day).
Example
import datetime

print('latest year which can be represented: ',
 datetime.date(datetime.MAXYEAR, 2, 25))

Output
latest year which can be represented: 9999-02-25

.day
This function returns the days count of the date which is entered by the user.
It gives count from 1 to 30/31 (or precisely number of days in the specified
month) both inclusive.
Example
import datetime

dateByUser = datetime.date(2020, 5, 27)
print('day count of the date entered by the user: ', dateByUser.day)

Output
day count of the date entered by the user: 27

.month
This function returns the month count of the date which is entered by the
user. It gives count from 1 to 12 both inclusive.
Example
import datetime

dateByUser = datetime.date(2024, 2, 29)
print('month count of the date entered by the user:', dateByUser.month)

Output
month count of the date entered by the user: 2

.year
This function returns the year count of the date which is entered by the user.
It give count from MINYEAR to MAXYEAR both inclusive.
Example
import datetime

dateByUser = datetime.date(2030, 10, 15)
print('year of the date entered by the user:', dateByUser.year)

Output
year of the date entered by the user: 2030

strftime()
This function helps us to represent date in different types of formats such as
Short/Long days(Mon, Monday), Short/Long years(21, 2021),
Numeric/Alphabetic month(03, March).
The image below represents the notations for the representation of different
types of formats of the dates.

Example
import datetime

todaydatetime = datetime.datetime.now()

print('current date and time: ', todaydatetime)
print('fetched out year from current date: ', todaydatetime.strftime('%Y'))
print('fetched out month from current date: ', todaydatetime.strftime('%B'))
print('fetched out day from current date: ', todaydatetime.strftime('%A'))
print('formatted the time from above generated date time: ', todaydatetime.strftime('%H:%M:%S'))
print(todaydatetime.strftime('formatted both date and time: ', "%d/%m/%Y, %H:%M:%S"))

Output
current date and time: 2021-10-17 12:14:52.394962
fetched out year from current date: 2021
fetched out month from current date: October
fetched out day from current date: Sunday
formatted the time from above generated date time: 12:14:52
formatted both date and time: 17/10/2021, 12:14:52

Explaination of Example
1. Firstly, we stored the current date and time into our variable

'todaydatetime'.
2. After storing the date we print the actual format of date & time

generated.
3. We have used '%Y' for extracting year from the above mentioned date.
4. We have used '%B' for extracting month from the date.
5. We have used '%A' for extracting day from the date.
6. We have use different time formatting formatters '%H, %M & %S' for

formatting the time.
7. Lastly, we format both time and date.

Current Date
We have two ways to find out the current date which are mentioned below:

1. .today()
2. .now()

.today()

.today() is used to return the current local date. We just can use it from the
date class of datetime module to get the current date.
Code
import datetime

currentdate = datetime.date.today()
print('current date: ', currentdate)

Output
current date: 2021-10-17

.now()

.now() is used to return the current local date and time as datetime object. So
what we can do is, we can format the datetime object to get only current date.
Code
import datetime

currentdate = datetime.datetime.now()

print('raw current date and time generated', currentdate)
print('current date formatted from date and time',
currentdate.strftime("%d/%m/%Y"))

Output
raw current date and time generated 2021-10-17 12:40:15.974292
current date formatted from date and time 17/10/2021

Use of datetime.strptime()
There is a function strptime() of datetime python class of python datetime
module which is used for conversion of timestamp string to the datetime
python objects.
.strptime() accepts 2 attributes timestamp and format in which we can convert
it to datetime object.
Syntax
import datetime

var1 = datetime.strptime('TimeStamp', 'Format in which we want to print the datetime object')

TimeStamps are represented as: 2021-01-02T10::52::69.125777
and
Formats are represented as: %Y-%B-%AT%H::%M::%S.%f

Example
import datetime

datetimeObj = datetime.datetime.strptime('2002-01-02T10::52::59.456777'
,'%Y-%m-%dT%H::%M::%S.%f')

print('changed timestamp string to datetime object', datetimeObj)
print('verifying the type of changed format: ', type(datetimeObj))

Output
changed timestamp string to datetime object 2002-01-02 10:52:59.456777

verifying the type of changed format: <class 'datetime.datetime'>

Explaination of Example
In the above code we have imported the python datetime library.
We then saved the timestamp and the format of datetime (explained in
strftime) object into the variable with the help of strptime().
Then we print the variable and also the type of variable.

How to Get Current timeStamp?
A timestamp is a sequence of characters used to find when a particular event
occurred, generally giving the date and time of the day which is accurate to a
small fraction of a second.
Let's see how we can get the current timestamp using the datetime python
module.
Syntax
import datetime

Date entered by the user/ Current date
var1 = datetime.now()

var1ToTimestamp = var1.timestamp()

*Example
import datetime

timestamp = datetime.datetime.now()

print('current date and time', timestamp)
print('current timestamp', timestamp.timestamp())

Output
current date and time 2021-10-17 13:43:04.221229
current timestamp 1634458384.221229

Explaination Of Code
In the above code we imported the datetime python library.
We then saved the date object into the variable.
Then we used the .timestamp() to convert our date object to the time
stamp.

How to Know the Day of the Given Date?
To get the FullName of the day

Code
 import datetime

 timestamp = datetime.datetime.now()

 print('full name of the day of the date used: ', timestamp.strftime('%A'))

Output
 full name of the day of the date used: Sunday

Explaination of Code
In the above code we imported the datetime python library.
We then saved the date object into the variable.
Then we print the full name of the day with the help of strftime()
having attribute '%A' as discussed in strftime()
To get the day count of the date we can use .strftime('%d') onto the date
object.

Code
 import datetime

 timestamp = datetime.datetime.now()

 print('day count of the day of the date used: ', timestamp.strftime('%d'))

Output
 day count of the day of the date used: 17

Explaination of Code
In the above code we imported the datetime python library.
We then saved the date object into the variable.
Then we print the full name of the day with the help of strftime()
having attribute '%d' as discussed in strftime().

Generate a List of Dates from a Given Date
Algorithm
Main Function

Import the datetime python module.
Get input for the StartDate and the EndDate from the user.
Run a for loop starting from StartDate to the EndDate(included).

while loop is running

print the dates which are returned by the UserDefined
Function

when loop stops
get out from it and you get all the between dates on the
output screen.

UserDefined Function
This function takes 2 attributes start date and the end date
Run a for loop starting from StartDate to the EndDate(included) on the
day count.

while loop is running
return the date to the main function.

when loop stops
get out form user defined function and returned to the main
function.

Code
import datetime

def datediff(date1, date2):
 for n in range(int ((date2 - date1).days)+1):
 yield date1 + datetime.timedelta(n)

startdate = datetime.date(2021, 10, 1)
enddate = datetime.date(2021, 10, 11)
print('List of dates between ', startdate.strftime("%d-%m-%y"),
' and ', enddate.strftime("%d-%m-%y"), ' is/are: ')
for date in datediff(startdate, enddate):
 print(date.strftime("%d-%m-%Y"))

Output
List of dates between 01-10-21 and 11-10-21 is/are:
01-10-2021
02-10-2021
03-10-2021
04-10-2021
05-10-2021
06-10-2021
07-10-2021
08-10-2021
09-10-2021
10-10-2021
11-10-2021

Applications Of Python DateTime Module
Can be used to check the remaining shelf life of items in the warehouse
managment softwares.
Can be used to determine the exact age(in years, months, days) of the
person by knowning his/her DateOfBirth.
Can be used to convert the time to different time zones.

Chapter 5: Python Advanced
Topics
1. Python Iterators
Iterators are objects that can be iterated upon. In this tutorial, you will learn
how iterator works and how you can build your own iterator using __iter__
and __next__ methods.

Iterators in Python
Iterators are everywhere in Python. They are elegantly implemented
within for loops, comprehensions, generators etc. but are hidden in plain
sight.
Iterator in Python is simply an object that can be iterated upon. An object
which will return data, one element at a time.
Technically speaking, a Python iterator object must implement two special
methods, __iter__() and __next__(), collectively called the iterator
protocol.
An object is called iterable if we can get an iterator from it. Most built-in
containers in Python like: list, tuple, string etc. are iterables.
The iter() function (which in turn calls the __iter__() method) returns an
iterator from them.
Iterating Through an Iterator
We use the next() function to manually iterate through all the items of an
iterator. When we reach the end and there is no more data to be returned, it
will raise the StopIteration Exception. Following is an example.

define a list
my_list = [4, 7, 0, 3]

get an iterator using iter()
my_iter = iter(my_list)

iterate through it using next()

Output: 4

print(next(my_iter))

Output: 7
print(next(my_iter))

next(obj) is same as obj.__next__()

Output: 0
print(my_iter.__next__())

Output: 3
print(my_iter.__next__())

This will raise error, no items left
next(my_iter)

4
7
0
3
Traceback (most recent call last):
 File "<string>", line 24, in <module>
 next(my_iter)
StopIteration

A more elegant way of automatically iterating is by using the for loop. Using
this, we can iterate over any object that can return an iterator, for example
list, string, file etc.

>>> for element in my_list:
... print(element)
...
4
7
0
3

Working of for loop for Iterators

As we see in the above example, the for loop was able to iterate
automatically through the list.
In fact the for loop can iterate over any iterable. Let's take a closer look at
how the for loop is actually implemented in Python.

for element in iterable:
 # do something with element

Is actually implemented as.

create an iterator object from that iterable
iter_obj = iter(iterable)

infinite loop
while True:
 try:
 # get the next item
 element = next(iter_obj)
 # do something with element
 except StopIteration:
 # if StopIteration is raised, break from loop
 break

So internally, the for loop creates an iterator object, iter_obj by
calling iter() on the iterable.
Ironically, this for loop is actually an infinite while loop.
Inside the loop, it calls next() to get the next element and executes the body
of the for loop with this value. After all the items exhaust, StopIteration is
raised which is internally caught and the loop ends. Note that any other kind
of exception will pass through.

Building Custom Iterators
Building an iterator from scratch is easy in Python. We just have to
implement the __iter__() and the __next__() methods.

The __iter__() method returns the iterator object itself. If required, some
initialization can be performed.
The __next__() method must return the next item in the sequence. On
reaching the end, and in subsequent calls, it must raise StopIteration.
Here, we show an example that will give us the next power of 2 in each
iteration. Power exponent starts from zero up to a user set number.

class PowTwo:
 """Class to implement an iterator
 of powers of two"""

 def __init__(self, max=0):
 self.max = max

 def __iter__(self):
 self.n = 0
 return self

 def __next__(self):
 if self.n <= self.max:
 result = 2 ** self.n
 self.n += 1
 return result
 else:
 raise StopIteration

create an object
numbers = PowTwo(3)

create an iterable from the object
i = iter(numbers)

Using next to get to the next iterator element
print(next(i))
print(next(i))
print(next(i))
print(next(i))
print(next(i))

1
2
4
8
Traceback (most recent call last):

 File "/home/bsoyuj/Desktop/Untitled-1.py", line 32, in <module>
 print(next(i))
 File "<string>", line 18, in __next__
 raise StopIteration
StopIteration

We can also use a for loop to iterate over our iterator class.

>>> for i in PowTwo(5):
... print(i)
...
1
2
4
8
16
32

Python Infinite Iterators
It is not necessary that the item in an iterator object has to be exhausted.
There can be infinite iterators (which never ends). We must be careful when
handling such iterators.

Here is a simple example to demonstrate infinite iterators.

The built-in function iter() can be called with two arguments where the first
argument must be a callable object (function) and second is the sentinel. The
iterator calls this function until the returned value is equal to the sentinel
.

>>> int()
0

>>> inf = iter(int,1)
>>> next(inf)
0
>>> next(inf)
0

We can see that the int() function always returns 0. So passing it
as iter(int,1) will return an iterator that calls int() until the returned value
equals 1. This never happens and we get an infinite iterator.
We can also build our own infinite iterators. The following iterator will,
theoretically, return all the odd numbers.
class InfIter:
 """Infinite iterator to return all
 odd numbers"""

 def __iter__(self):
 self.num = 1
 return self

 def __next__(self):
 num = self.num
 self.num += 2
 return num

A sample run would be as follows.

>>> a = iter(InfIter())
>>> next(a)
1
>>> next(a)
3
>>> next(a)
5
>>> next(a)
7

And so on...

Be careful to include a terminating condition, when iterating over these types
of infinite iterators.

The advantage of using iterators is that they save resources. Like shown
above, we could get all the odd numbers without storing the entire number
system in memory. We can have infinite items (theoretically) in finite
memory.

There's an easier way to create iterators in Python. To learn more
visit: Python generators using yield.

2. Python Generators
Generators in Python
There is a lot of work in building an iterator in Python. We have to
implement a class with __iter__() and __next__() method, keep track of
internal states, and raise StopIteration when there are no values to be
returned.
This is both lengthy and counterintuitive. Generator comes to the rescue in
such situations.

Python generators are a simple way of creating iterators. All the work we
mentioned above are automatically handled by generators in Python.

Simply speaking, a generator is a function that returns an object (iterator)
which we can iterate over (one value at a time).

Create Generators in Python
It is fairly simple to create a generator in Python. It is as easy as defining a
normal function, but with a yield statement instead of a return statement.
If a function contains at least one yield statement (it may contain
other yield or return statements), it becomes a generator function.
Both yield and return will return some value from a function.
The difference is that while a return statement terminates a function
entirely, yield statement pauses the function saving all its states and later
continues from there on successive calls.

Differences between Generator function and
Normal function
Here is how a generator function differs from a normal function.

Generator function contains one or more yield statements.
When called, it returns an object (iterator) but does not start execution
immediately.
Methods like __iter__() and __next__() are implemented automatically.
So we can iterate through the items using next().
Once the function yields, the function is paused and the control is
transferred to the caller.
Local variables and their states are remembered between successive calls.
Finally, when the function terminates, StopIteration is raised
automatically on further calls.

Here is an example to illustrate all of the points stated above. We have a
generator function named my_gen() with several yield statements.

A simple generator function
def my_gen():
 n = 1
 print('This is printed first')
 # Generator function contains yield statements
 yield n

 n += 1
 print('This is printed second')
 yield n

 n += 1
 print('This is printed at last')
 yield n

An interactive run in the interpreter is given below. Run these in the Python
shell to see the output.

>>> # It returns an object but does not start execution immediately.
>>> a = my_gen()

>>> # We can iterate through the items using next().
>>> next(a)
This is printed first
1
>>> # Once the function yields, the function is paused and the control is transferred to the caller.

>>> # Local variables and theirs states are remembered between successive calls.
>>> next(a)
This is printed second
2

>>> next(a)
This is printed at last
3

>>> # Finally, when the function terminates, StopIteration is raised automatically on further calls.
>>> next(a)
Traceback (most recent call last):
...
StopIteration
>>> next(a)
Traceback (most recent call last):
...
StopIteration

One interesting thing to note in the above example is that the value of
variable n is remembered between each call.
Unlike normal functions, the local variables are not destroyed when the
function yields. Furthermore, the generator object can be iterated only once.

To restart the process we need to create another generator object using
something like a = my_gen().
One final thing to note is that we can use generators with for loops directly.
This is because a for loop takes an iterator and iterates over it
using next() function. It automatically ends when StopIteration is raised.

A simple generator function
def my_gen():
 n = 1
 print('This is printed first')
 # Generator function contains yield statements
 yield n

 n += 1
 print('This is printed second')
 yield n

 n += 1
 print('This is printed at last')
 yield n

Using for loop
for item in my_gen():
 print(item)

When you run the program, the output will be:

This is printed first
1
This is printed second
2
This is printed at last
3

Python Generators with a Loop
The above example is of less use and we studied it just to get an idea of what
was happening in the background.

Normally, generator functions are implemented with a loop having a suitable
terminating condition.

Let's take an example of a generator that reverses a string.
def rev_str(my_str):
 length = len(my_str)
 for i in range(length - 1, -1, -1):
 yield my_str[i]

For loop to reverse the string
for char in rev_str("hello"):
 print(char)

Output

o
l
l
e
h

Python Generator Expression
Simple generators can be easily created on the fly using generator
expressions. It makes building generators easy.

Similar to the lambda functions which create anonymous functions, generator
expressions create anonymous generator functions.
The syntax for generator expression is similar to that of a list comprehension
in Python. But the square brackets are replaced with round parentheses.
The major difference between a list comprehension and a generator
expression is that a list comprehension produces the entire list while the
generator expression produces one item at a time.

They have lazy execution (producing items only when asked for). For this
reason, a generator expression is much more memory efficient than an
equivalent list comprehension.
Initialize the list
my_list = [1, 3, 6, 10]

square each term using list comprehension
list_ = [x**2 for x in my_list]

same thing can be done using a generator expression
generator expressions are surrounded by parenthesis ()
generator = (x**2 for x in my_list)

print(list_)
print(generator)

Output

[1, 9, 36, 100]
<generator object <genexpr> at 0x7f5d4eb4bf50>

We can see above that the generator expression did not produce the required
result immediately. Instead, it returned a generator object, which produces
items only on demand.

Here is how we can start getting items from the generator:
Initialize the list
my_list = [1, 3, 6, 10]

a = (x**2 for x in my_list)
print(next(a))

print(next(a))

print(next(a))

print(next(a))

next(a)

When we run the above program, we get the following output:

1
9
36
100
Traceback (most recent call last):
 File "<string>", line 15, in <module>
StopIteration

Generator expressions can be used as function arguments. When used in such
a way, the round parentheses can be dropped.

>>> sum(x**2 for x in my_list)
146

>>> max(x**2 for x in my_list)
100

Use of Python Generators
There are several reasons that make generators a powerful implementation.

1. Easy to Implement
Generators can be implemented in a clear and concise way as compared to
their iterator class counterpart. Following is an example to implement a
sequence of power of 2 using an iterator class.

class PowTwo:
 def __init__(self, max=0):
 self.n = 0
 self.max = max

 def __iter__(self):
 return self

 def __next__(self):
 if self.n > self.max:
 raise StopIteration

 result = 2 ** self.n
 self.n += 1
 return result

The above program was lengthy and confusing. Now, let's do the same using
a generator function.

def PowTwoGen(max=0):
 n = 0
 while n < max:
 yield 2 ** n
 n += 1

Since generators keep track of details automatically, the implementation was
concise and much cleaner.

2. Memory Efficient
A normal function to return a sequence will create the entire sequence in

memory before returning the result. This is an overkill, if the number of items
in the sequence is very large.

Generator implementation of such sequences is memory friendly and is
preferred since it only produces one item at a time.

3. Represent Infinite Stream
Generators are excellent mediums to represent an infinite stream of data.
Infinite streams cannot be stored in memory, and since generators produce
only one item at a time, they can represent an infinite stream of data.

The following generator function can generate all the even numbers (at least
in theory).

def all_even():
 n = 0
 while True:
 yield n
 n += 2

4. Pipelining Generators
Multiple generators can be used to pipeline a series of operations. This is best
illustrated using an example.

Suppose we have a generator that produces the numbers in the Fibonacci
series. And we have another generator for squaring numbers.

If we want to find out the sum of squares of numbers in the Fibonacci series,
we can do it in the following way by pipelining the output of generator
functions together.

def fibonacci_numbers(nums):
 x, y = 0, 1
 for _ in range(nums):
 x, y = y, x+y
 yield x

def square(nums):
 for num in nums:

 yield num**2

print(sum(square(fibonacci_numbers(10))))

Output

4895

3. Python Closures
Nonlocal variable in a nested function
Before getting into what a closure is, we have to first understand what a
nested function and nonlocal variable is.

A function defined inside another function is called a nested function. Nested
functions can access variables of the enclosing scope.

In Python, these non-local variables are read-only by default and we must
declare them explicitly as non-local (using nonlocal keyword) in order to
modify them.
Following is an example of a nested function accessing a non-local variable.

def print_msg(msg):
 # This is the outer enclosing function

 def printer():
 # This is the nested function
 print(msg)

 printer()

We execute the function
Output: Hello
print_msg("Hello")

Output

Hello

We can see that the nested printer() function was able to access the non-
local msg variable of the enclosing function.

Defining a Closure Function
In the example above, what would happen if the last line of the
function print_msg() returned the printer() function instead of calling it? This
means the function was defined as follows:

def print_msg(msg):
 # This is the outer enclosing function

 def printer():
 # This is the nested function
 print(msg)

 return printer # returns the nested function

Now let's try calling this function.
Output: Hello
another = print_msg("Hello")
another()

Output

Hello

That's unusual.

The print_msg() function was called with the string "Hello" and the returned
function was bound to the name another. On calling another(), the message
was still remembered although we had already finished executing
the print_msg() function.
This technique by which some data ("Hello in this case) gets attached to the
code is called closure in Python.

This value in the enclosing scope is remembered even when the variable goes
out of scope or the function itself is removed from the current namespace.

Try running the following in the Python shell to see the output.

>>> del print_msg
>>> another()
Hello
>>> print_msg("Hello")
Traceback (most recent call last):
...
NameError: name 'print_msg' is not defined

Here, the returned function still works even when the original function was
deleted.

When do we have closures?
As seen from the above example, we have a closure in Python when a nested
function references a value in its enclosing scope.

The criteria that must be met to create closure in Python are summarized in
the following points.

We must have a nested function (function inside a function).
The nested function must refer to a value defined in the enclosing
function.
The enclosing function must return the nested function.

When to use closures?
So what are closures good for?

Closures can avoid the use of global values and provides some form of data
hiding. It can also provide an object oriented solution to the problem.

When there are few methods (one method in most cases) to be implemented
in a class, closures can provide an alternate and more elegant solution. But
when the number of attributes and methods get larger, it's better to implement

a class.

Here is a simple example where a closure might be more preferable than
defining a class and making objects. But the preference is all yours.
def make_multiplier_of(n):
 def multiplier(x):
 return x * n
 return multiplier

Multiplier of 3
times3 = make_multiplier_of(3)

Multiplier of 5
times5 = make_multiplier_of(5)

Output: 27
print(times3(9))

Output: 15
print(times5(3))

Output: 30
print(times5(times3(2)))

Output

27
15
30

Python Decorators make an extensive use of closures as well.
On a concluding note, it is good to point out that the values that get enclosed
in the closure function can be found out.

All function objects have a __closure__ attribute that returns a tuple of cell
objects if it is a closure function. Referring to the example above, we
know times3 and times5 are closure functions.

>>> make_multiplier_of.__closure__
>>> times3.__closure__
(<cell at 0x0000000002D155B8: int object at 0x000000001E39B6E0>,)

The cell object has the attribute cell_contents which stores the closed value.

>>> times3.__closure__[0].cell_contents
3
>>> times5.__closure__[0].cell_contents
5

4. Python Decorators
A decorator takes in a function, adds some functionality and returns it. In this
tutorial, you will learn how you can create a decorator and why you should
use it.

Decorators in Python
Python has an interesting feature called decorators to add functionality to an
existing code.
This is also called metaprogramming because a part of the program tries to
modify another part of the program at compile time.

Prerequisites for learning decorators
In order to understand about decorators, we must first know a few basic
things in Python.

We must be comfortable with the fact that everything in Python (Yes! Even
classes), are objects. Names that we define are simply identifiers bound to
these objects. Functions are no exceptions, they are objects too (with
attributes). Various different names can be bound to the same function object.
Here is an example.
def first(msg):
 print(msg)

first("Hello")

second = first
second("Hello")

Output

Hello
Hello

When you run the code, both functions first and second give the same output.
Here, the names first and second refer to the same function object.
Now things start getting weirder.

Functions can be passed as arguments to another function.

If you have used functions like map, filter and reduce in Python, then you
already know about this.
Such functions that take other functions as arguments are also called higher
order functions. Here is an example of such a function.

def inc(x):
 return x + 1

def dec(x):
 return x - 1

def operate(func, x):
 result = func(x)
 return result

We invoke the function as follows.

>>> operate(inc,3)
4
>>> operate(dec,3)
2

Furthermore, a function can return another function.
def is_called():
 def is_returned():
 print("Hello")
 return is_returned

new = is_called()

Outputs "Hello"
new()

Output

Hello

Here, is_returned() is a nested function which is defined and returned each
time we call is_called().
Finally, we must know about Closures in Python.

Getting back to Decorators
Functions and methods are called callable as they can be called.
In fact, any object which implements the special __call__() method is termed
callable. So, in the most basic sense, a decorator is a callable that returns a
callable.
Basically, a decorator takes in a function, adds some functionality and returns
it.
def make_pretty(func):
 def inner():
 print("I got decorated")
 func()
 return inner

def ordinary():
 print("I am ordinary")

When you run the following codes in shell,

>>> ordinary()
I am ordinary

>>> # let's decorate this ordinary function
>>> pretty = make_pretty(ordinary)
>>> pretty()
I got decorated
I am ordinary

In the example shown above, make_pretty() is a decorator. In the assignment
step:

pretty = make_pretty(ordinary)

The function ordinary() got decorated and the returned function was given
the name pretty.
We can see that the decorator function added some new functionality to the
original function. This is similar to packing a gift. The decorator acts as a
wrapper. The nature of the object that got decorated (actual gift inside) does
not alter. But now, it looks pretty (since it got decorated).

Generally, we decorate a function and reassign it as,

ordinary = make_pretty(ordinary).

This is a common construct and for this reason, Python has a syntax to
simplify this.

We can use the @ symbol along with the name of the decorator function and
place it above the definition of the function to be decorated. For example,

@make_pretty
def ordinary():
 print("I am ordinary")

is equivalent to

def ordinary():
 print("I am ordinary")
ordinary = make_pretty(ordinary)

This is just a syntactic sugar to implement decorators.

Decorating Functions with Parameters
The above decorator was simple and it only worked with functions that did
not have any parameters. What if we had functions that took in parameters
like:

def divide(a, b):
 return a/b

This function has two parameters, a and b. We know it will give an error if
we pass in b as 0.

>>> divide(2,5)
0.4
>>> divide(2,0)
Traceback (most recent call last):
...
ZeroDivisionError: division by zero

Now let's make a decorator to check for this case that will cause the error.
def smart_divide(func):
 def inner(a, b):
 print("I am going to divide", a, "and", b)
 if b == 0:
 print("Whoops! cannot divide")
 return

 return func(a, b)
 return inner

@smart_divide
def divide(a, b):
 print(a/b)

This new implementation will return None if the error condition arises.

>>> divide(2,5)
I am going to divide 2 and 5
0.4

>>> divide(2,0)
I am going to divide 2 and 0
Whoops! cannot divide

In this manner, we can decorate functions that take parameters.

A keen observer will notice that parameters of the nested inner() function
inside the decorator is the same as the parameters of functions it decorates.
Taking this into account, now we can make general decorators that work with
any number of parameters.
In Python, this magic is done as function(*args, **kwargs). In this
way, args will be the tuple of positional arguments and kwargs will be
the dictionary of keyword arguments. An example of such a decorator will
be:

def works_for_all(func):
 def inner(*args, **kwargs):
 print("I can decorate any function")
 return func(*args, **kwargs)
 return inner

Chaining Decorators in Python
Multiple decorators can be chained in Python.

This is to say, a function can be decorated multiple times with different (or
same) decorators. We simply place the decorators above the desired function.

def star(func):
 def inner(*args, **kwargs):
 print("*" * 30)
 func(*args, **kwargs)
 print("*" * 30)
 return inner

def percent(func):
 def inner(*args, **kwargs):
 print("%" * 30)
 func(*args, **kwargs)
 print("%" * 30)
 return inner

@star
@percent
def printer(msg):
 print(msg)

printer("Hello")

Output

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Hello
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

The above syntax of,

@star
@percent
def printer(msg):
 print(msg)

is equivalent to

def printer(msg):
 print(msg)
printer = star(percent(printer))

The order in which we chain decorators matter. If we had reversed the order
as,

@percent
@star
def printer(msg):
 print(msg)

The output would be:

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Hello

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

5. Python @property decorator
Python programming provides us with a built-in @property decorator which
makes usage of getter and setters much easier in Object-Oriented
Programming.
Before going into details on what @property decorator is, let us first build an
intuition on why it would be needed in the first place.

Class Without Getters and Setters
Let us assume that we decide to make a class that stores the temperature in

degrees Celsius. It would also implement a method to convert the
temperature into degrees Fahrenheit. One way of doing this is as follows:

class Celsius:
 def __init__(self, temperature = 0):
 self.temperature = temperature

 def to_fahrenheit(self):
 return (self.temperature * 1.8) + 32

We can make objects out of this class and manipulate
the temperature attribute as we wish:

Basic method of setting and getting attributes in Python
class Celsius:
 def __init__(self, temperature=0):
 self.temperature = temperature

 def to_fahrenheit(self):
 return (self.temperature * 1.8) + 32

Create a new object
human = Celsius()

Set the temperature
human.temperature = 37

Get the temperature attribute
print(human.temperature)

Get the to_fahrenheit method
print(human.to_fahrenheit())

Output

37
98.60000000000001

The extra decimal places when converting into Fahrenheit is due to the
floating point arithmetic error. To learn more, visit Python Floating Point
Arithmetic Error.

Whenever we assign or retrieve any object attribute like temperature as
shown above, Python searches it in the object's built-in __dict__ dictionary
attribute.

>>> human.__dict__
{'temperature': 37}

Therefore, man.temperature internally becomes man.__dict__['temperature'].

Using Getters and Setters
Suppose we want to extend the usability of the Celsius class defined above.
We know that the temperature of any object cannot reach below -273.15
degrees Celsius (Absolute Zero in Thermodynamics)
Let's update our code to implement this value constraint.

An obvious solution to the above restriction will be to hide the
attribute temperature (make it private) and define new getter and setter
methods to manipulate it. This can be done as follows:

Making Getters and Setter methods
class Celsius:
 def __init__(self, temperature=0):
 self.set_temperature(temperature)

 def to_fahrenheit(self):
 return (self.get_temperature() * 1.8) + 32

 # getter method
 def get_temperature(self):
 return self._temperature

 # setter method
 def set_temperature(self, value):
 if value < -273.15:
 raise ValueError("Temperature below -273.15 is not possible.")
 self._temperature = value

As we can see, the above method introduces two
new get_temperature() and set_temperature() methods.
Furthermore, temperature was replaced with _temperature. An
underscore _ at the beginning is used to denote private variables in Python.

Now, let's use this implementation:
Making Getters and Setter methods
class Celsius:
 def __init__(self, temperature=0):
 self.set_temperature(temperature)

 def to_fahrenheit(self):
 return (self.get_temperature() * 1.8) + 32

 # getter method
 def get_temperature(self):
 return self._temperature

 # setter method
 def set_temperature(self, value):
 if value < -273.15:
 raise ValueError("Temperature below -273.15 is not possible.")
 self._temperature = value

Create a new object, set_temperature() internally called by __init__
human = Celsius(37)

Get the temperature attribute via a getter
print(human.get_temperature())

Get the to_fahrenheit method, get_temperature() called by the method itself
print(human.to_fahrenheit())

new constraint implementation
human.set_temperature(-300)

Get the to_fahreheit method
print(human.to_fahrenheit())

Output

37
98.60000000000001
Traceback (most recent call last):
 File "<string>", line 30, in <module>
 File "<string>", line 16, in set_temperature
ValueError: Temperature below -273.15 is not possible.

This update successfully implemented the new restriction. We are no longer
allowed to set the temperature below -273.15 degrees Celsius.

Note: The private variables don't actually exist in Python. There are simply
norms to be followed. The language itself doesn't apply any restrictions.

>>> human._temperature = -300
>>> human.get_temperature()
-300

However, the bigger problem with the above update is that all the programs
that implemented our previous class have to modify their code
from obj.temperature to obj.get_temperature() and all expressions
like obj.temperature = val to obj.set_temperature(val).
This refactoring can cause problems while dealing with hundreds of
thousands of lines of codes.

All in all, our new update was not backwards compatible. This is
where @property comes to rescue.

The property Class
A pythonic way to deal with the above problem is to use the property class.
Here is how we can update our code:

using property class
class Celsius:
 def __init__(self, temperature=0):
 self.temperature = temperature

 def to_fahrenheit(self):
 return (self.temperature * 1.8) + 32

 # getter
 def get_temperature(self):
 print("Getting value...")
 return self._temperature

 # setter
 def set_temperature(self, value):
 print("Setting value...")
 if value < -273.15:
 raise ValueError("Temperature below -273.15 is not possible")
 self._temperature = value

 # creating a property object
 temperature = property(get_temperature, set_temperature)

We added a print() function
inside get_temperature() and set_temperature() to clearly observe that they
are being executed.
The last line of the code makes a property object temperature. Simply put,
property attaches some code (get_temperature and set_temperature) to the
member attribute accesses (temperature).
Let's use this update code:
using property class
class Celsius:
 def __init__(self, temperature=0):
 self.temperature = temperature

 def to_fahrenheit(self):
 return (self.temperature * 1.8) + 32

 # getter
 def get_temperature(self):
 print("Getting value...")
 return self._temperature

 # setter
 def set_temperature(self, value):
 print("Setting value...")
 if value < -273.15:
 raise ValueError("Temperature below -273.15 is not possible")
 self._temperature = value

 # creating a property object
 temperature = property(get_temperature, set_temperature)

human = Celsius(37)

print(human.temperature)

print(human.to_fahrenheit())

human.temperature = -300

Output

Setting value...
Getting value...
37
Getting value...
98.60000000000001
Setting value...
Traceback (most recent call last):
 File "<string>", line 31, in <module>
 File "<string>", line 18, in set_temperature
ValueError: Temperature below -273 is not possible

As we can see, any code that retrieves the value of temperature will
automatically call get_temperature() instead of a dictionary (__dict__) look-
up. Similarly, any code that assigns a value to temperature will automatically
call set_temperature().
We can even see above that set_temperature() was called even when we
created an object.

>>> human = Celsius(37)
Setting value...

Can you guess why?
The reason is that when an object is created, the __init__() method gets
called. This method has the line self.temperature = temperature. This
expression automatically calls set_temperature().
Similarly, any access like c.temperature automatically
calls get_temperature(). This is what property does. Here are a few more
examples.

>>> human.temperature
Getting value
37
>>> human.temperature = 37
Setting value

>>> c.to_fahrenheit()
Getting value
98.60000000000001

By using property, we can see that no modification is required in the
implementation of the value constraint. Thus, our implementation is
backward compatible.

The @property Decorator
In Python, property() is a built-in function that creates and returns
a property object. The syntax of this function is:

property(fget=None, fset=None, fdel=None, doc=None)

fget is function to get value of the attribute
fset is function to set value of the attribute
fdel is function to delete the attribute
doc is a string (like a comment)

As seen from the implementation, these function arguments are optional. So,
a property object can simply be created as follows.

>>> property()
<property object at 0x0000000003239B38>

A property object has three methods, getter(), setter(), and deleter() to
specify fget, fset and fdel at a later point. This means, the line:

temperature = property(get_temperature,set_temperature)

can be broken down as:

make empty property
temperature = property()
assign fget
temperature = temperature.getter(get_temperature)
assign fset
temperature = temperature.setter(set_temperature)

These two pieces of codes are equivalent.

Programmers familiar with Python Decorators can recognize that the above
construct can be implemented as decorators.

We can even not define the names get_temperature and set_temperature as
they are unnecessary and pollute the class namespace.
For this, we reuse the temperature name while defining our getter and setter
functions. Let's look at how to implement this as a decorator:

Using @property decorator
class Celsius:
 def __init__(self, temperature=0):
 self.temperature = temperature

 def to_fahrenheit(self):
 return (self.temperature * 1.8) + 32

 @property
 def temperature(self):
 print("Getting value...")
 return self._temperature

 @temperature.setter
 def temperature(self, value):
 print("Setting value...")
 if value < -273.15:
 raise ValueError("Temperature below -273 is not possible")
 self._temperature = value

create an object
human = Celsius(37)

print(human.temperature)

print(human.to_fahrenheit())

coldest_thing = Celsius(-300)

Output

Setting value...
Getting value...
37
Getting value...
98.60000000000001
Setting value...
Traceback (most recent call last):
 File "", line 29, in
 File "", line 4, in __init__
 File "", line 18, in temperature
ValueError: Temperature below -273 is not possible

The above implementation is simple and efficient. It is the recommended way
to use property.

6. Python Regular Expressions
Python RegEx
Python has a module named re to work with regular expressions. To use it,
we need to import the module.

import re

The module defines several functions and constants to work with RegEx.

re.findall()

The re.findall() method returns a list of strings containing all matches.

Example 1: re.findall()

Program to extract numbers from a string

import re

string = 'hello 12 hi 89. Howdy 34'
pattern = '\d+'

result = re.findall(pattern, string)
print(result)

Output: ['12', '89', '34']

If the pattern is not found, re.findall() returns an empty list.
re.split()
The re.split method splits the string where there is a match and returns a list
of strings where the splits have occurred.

Example 2: re.split()
import re

string = 'Twelve:12 Eighty nine:89.'
pattern = '\d+'

result = re.split(pattern, string)
print(result)

Output: ['Twelve:', ' Eighty nine:', '.']

If the pattern is not found, re.split() returns a list containing the original
string.

You can pass maxsplit argument to the re.split() method. It's the maximum
number of splits that will occur.

import re

string = 'Twelve:12 Eighty nine:89 Nine:9.'

pattern = '\d+'

maxsplit = 1
split only at the first occurrence
result = re.split(pattern, string, 1)
print(result)

Output: ['Twelve:', ' Eighty nine:89 Nine:9.']

By the way, the default value of maxsplit is 0; meaning all possible splits.
re.sub()
The syntax of re.sub() is:

re.sub(pattern, replace, string)

The method returns a string where matched occurrences are replaced with the
content of replace variable.

Example 3: re.sub()
Program to remove all whitespaces
import re

multiline string
string = 'abc 12\
de 23 \n f45 6'

matches all whitespace characters
pattern = '\s+'

empty string
replace = ''

new_string = re.sub(pattern, replace, string)
print(new_string)

Output: abc12de23f456
If the pattern is not found, re.sub() returns the original string.
You can pass count as a fourth parameter to the re.sub() method. If omited, it
results to 0. This will replace all occurrences.

import re

multiline string
string = 'abc 12\
de 23 \n f45 6'

matches all whitespace characters
pattern = '\s+'
replace = ''

new_string = re.sub(r'\s+', replace, string, 1)
print(new_string)

Output:
abc12de 23
f45 6

re.subn()
The re.subn() is similar to re.sub() except it returns a tuple of 2 items
containing the new string and the number of substitutions made.
Example 4: re.subn()
Program to remove all whitespaces
import re

multiline string
string = 'abc 12\
de 23 \n f45 6'

matches all whitespace characters
pattern = '\s+'

empty string
replace = ''

new_string = re.subn(pattern, replace, string)
print(new_string)

Output: ('abc12de23f456', 4)

re.search()
The re.search() method takes two arguments: a pattern and a string. The
method looks for the first location where the RegEx pattern produces a match
with the string.
If the search is successful, re.search() returns a match object; if not, it
returns None.

match = re.search(pattern, str)

Example 5: re.search()
import re

string = "Python is fun"

check if 'Python' is at the beginning
match = re.search('\APython', string)

if match:
 print("pattern found inside the string")
else:
 print("pattern not found")

Output: pattern found inside the string

Here, match contains a match object.

Match object
You can get methods and attributes of a match object using dir() function.
Some of the commonly used methods and attributes of match objects are:

match.group()
The group() method returns the part of the string where there is a match.

Example 6: Match object

import re

string = '39801 356, 2102 1111'

Three digit number followed by space followed by two digit number
pattern = '(\d{3}) (\d{2})'

match variable contains a Match object.
match = re.search(pattern, string)

if match:
 print(match.group())
else:
 print("pattern not found")

Output: 801 35

Here, match variable contains a match object.
Our pattern (\d{3}) (\d{2}) has two subgroups (\d{3}) and (\d{2}). You can
get the part of the string of these parenthesized subgroups. Here's how:

>>> match.group(1)
'801'

>>> match.group(2)
'35'
>>> match.group(1, 2)
('801', '35')

>>> match.groups()
('801', '35')

match.start(), match.end() and match.span()
The start() function returns the index of the start of the matched substring.
Similarly, end() returns the end index of the matched substring.

>>> match.start()
2
>>> match.end()
8

The span() function returns a tuple containing start and end index of the

matched part.

>>> match.span()
(2, 8)

match.re and match.string
The re attribute of a matched object returns a regular expression object.
Similarly, string attribute returns the passed string.

>>> match.re
re.compile('(\\d{3}) (\\d{2})')

>>> match.string
'39801 356, 2102 1111'

We have covered all commonly used methods defined in the re module.

Using r prefix before RegEx
When r or R prefix is used before a regular expression, it means raw string.
For example, '\n' is a new line whereas r'\n' means two characters: a
backslash \ followed by n.
Backlash \ is used to escape various characters including all metacharacters.
However, using r prefix makes \ treat as a normal character.

Example 7: Raw string using r prefix

import re

string = '\n and \r are escape sequences.'

result = re.findall(r'[\n\r]', string)
print(result)

Output: ['\n', '\r']

Chapter 6: Error Handling

1. Python Error and In-built
Exception in Python
A small typing mistake can lead to an error in any programming language
because we must follow the syntax rules while coding in any programming
language.
Same is the case with python, in this tutorial we will learn about syntax errors
and exceptions in python along with listing down some of the commonly
occuring Exceptions in python.

Python: Syntax Error
This is the most common and basic error situation where you break any
syntax rule like if you are working with Python 3.x version and you write the
following code for printing any statement,

print "I love Python!"

SyntaxError: Missing parentheses in call to 'print'.

Because, Python 3 onwards the syntax for using the print statement has
changed. Similarly if you forget to add colon(:) at the end of the if condition,
you will get a SyntaxError:

if 7 > 5

 print("Yo Yo!")

SyntaxError: invalid syntax

Hence syntax errors are the most basic type of errors that you will encounter
while coding in python and these can easily be fixed by seeing the error
message and correcting the code as per python syntax.

Python: What is an Exception?
Contrary to syntax error, exception is a type of error which is caused as a
result of malfunctioning of the code during execution.
Your code might not have any syntax error, still it can lead to exceptions
when it is executed.
Let's take the most basic example of dividing a number by zero:

a = 10

b = 0

print("Result of Division: " + str(a/b))

Traceback (most recent call last):

 File "main.py", line 3, in <module>

 print("Result of Division: " + str(a/b))

ZeroDivisionError: division by zero

As we can see in the output, we got ZeroDivisionError while the syntax of
our python code was absolutely correct, because in this case the error or we
should say the exception was generated while code execution.
Python returns a very detailed exception message for us to understand the
origin point and reason for the exception so that it becomes easier for us to
fix our code.

Decoding the Exception Message in Python

The term Traceback in the exception message means that python has traced
back the code to the point from where the exception occured and will be
showing the related messages after this line.
The second line in the exception message, as you can see above, tells us
the name of the python file and the exact line number for the code due to
which exception was generated.
If that is still not helpful for someone, in the third line of exception message
the complete code statement which lead to the exception is printed.
And then in the last line, python tells us which exception/error occured,
which in our example above is ZeroDivisionError.

2. Python Exception Handling
Exception handling is a concept used in Python to handle the exceptions and
errors that occur during the execution of any program. Exceptions are
unexpected errors that can occur during code execution. We have covered
about exceptions and errors in python in the last tutorial.
Well, yes, exception occur, there can be errors in your code, but why should
we invest time in handling exceptions?
The answer to this question is to improve User Experience. When an
exception occurs, following things happen:

Program execution abruptly stops.

The complete exception message along with the file name and line
number of code is printed on console.

All the calculations and operations performed till that point in code are
lost.

Now think that one day you are using Studytonight's website, you click on
some link to open a tutorial, which, for some unknown reason, leads to some
exception. If we haven't handled the exceptions then you will see exception
message while the webpage is also not loaded. Will you like that?
Hence, exception handling is very important to handle errors gracefully and
displaying appropriate message to inform the user about the malfunctioning.

Handling Exceptions using try and except
For handling exceptions in Python we use two types of blocks,
namely, try block and except block.
In the try block, we write the code in which there are chances of any error or
exception to occur.
Whereas the except block is responsible for catching the exception and
executing the statements specified inside it.
Below we have the code performing division by zero:

a = 10

b = 0

print("Result of Division: " + str(a/b))

Traceback (most recent call last):

File "main.py", line 3, in <module>

print("Result of Division: " + str(a/b))

ZeroDivisionError: division by zero

The above code leads to exception and the exception message is printed as
output on the console.
If we use the try and except block, we can handle this exception gracefully.

try block

try:

 a = 10

 b = 0

 print("Result of Division: " + str(a/b))

except:

 print("You have divided a number by zero, which is not allowed.")

The try block
As you can see in the code example above, the try block is used to put the
whole code that is to be executed in the program(which you think can lead to
exception), if any exception occurs during execution of the code inside
the try block, then it causes the execution of the code to be directed to
the except block and the execution that was going on in the try block is
interrupted. But, if no exception occurs, then the whole try block is executed
and the except block is never executed.

The except block
The try block is generally followed by the except block which holds the
exception cleanup code(exception has occured, how to effectively handle the
situation) like some print statement to print some message or may
be trigger some event or store something in the database etc.
In the except block, along with the keyword except we can also provide
the name of exception class which is expected to occur. In case we do not
provide any exception class name, it catches all the exceptions, otherwise it
will only catch the exception of the type which is mentioned.
Here is the syntax:

except block

except(<Types of Exceptions to catched>):

 # except block starts

If you notice closely, we have mentioned types of exceptions, yes, we can
even provide names of multiples exception classes separated by comma in
the except statement.

Code Execution continues after except block

Another important point to note here is that code execution is interrupted in
the try block when an exception occurs, and the code statements inside
the try block after the line which caused the exception are not executed.
The execution then jumps into the except block. And after the execution of
the code statements inside the except block the code statements after it are
executed, just like any other normal execution.
Let's take an example:

try block

try:

 a = 10

 b = 0

 print("Result of Division: " + str(a/b))

 print("No! This line will not be executed.")

except:

 print("You have divided a number by zero, which is not allowed.")

outside the try-except blocks

print("Yo! This line will be executed.")

You have divided a number by zero, which is not allowed.

Yo! This line will be executed.

Catching Multiple Exceptions in Python
There are multiple ways to accomplish this. Either we can have
multiple except blocks with each one handling a specific exception class or
we can handle multiple exception classes in a single except block.

Multiple except blocks
If you think your code may generate different exceptions in different
situations and you want to handle those exceptions individually, then you can
have multiple except blocks.
Mostly exceptions occur when user inputs are involved. So let's take a simple
example where we will ask user for two numbers to perform division
operation on them and show them the result.
We will try to handle multiple possible exception cases using
multiple except blocks.
Try running the above code, provide 0 as value for the denominator and see
what happens and then provide some string(non-integer) value for any
variable. We have handled both the cases in the above code.

Handling Multiple Exceptions with on except block
As you can see in the above example we printed different messages based on
what exception occured. If you do not have such requirements where you
need to handle different exception individually, you can catch a set of
exceptions in a single exception block as well.
Here is above the above code with a single except block:

try block

try:

 a = int(input("Enter numerator number: "))

 b = int(input("Enter denominator number: "))

 print("Result of Division: " + str(a/b))

except block handling division by zero

except(ValueError, ZeroDivisionError):

 print("Please check the input value: It should be an integer greater than 0")

here we have handled both the exceptions using a single except block while
showing a meaningful message to the user.

Generic except block to Handle unknown Exceptions
Although we do try to make our code error free by testing it and using
exception handling but there can be some error situation which we might
have missed.
So when we use except blocks to handle specific exception classes we should
always have a generic except block at the end to handle any runtime
excpetions(surprise events).

try block

try:

 a = int(input("Enter numerator number: "))

 b = int(input("Enter denominator number: "))

 print("Result of Division: " + str(a/b))

except block handling division by zero

except(ZeroDivisionError):

 print("You have divided a number by zero, which is not allowed.")

except block handling wrong value type

except(ValueError):

 print("You must enter integer value")

generic except block

except:

 print("Oops! Something went wrong!")

In the code above the first except block will handle the ZeroDivisionError,

second except block will handle the ValueError and for any other exception
that might occur we have the third except block.
In the coming tutorials we will learn about finally block and how to raise an
exception using the raise keyword.

3. Exeption Handling: Finally
The finally code block is also a part of exception handling. When we handle
exception using the try and except block, we can include a finally block at
the end. The finally block is always executed, so it is generally used for doing
the concluding tasks like closing file resources or closing database
connection or may be ending the program execution with a delightful
message.

finally block with/without Exception Handling
If in your code, the except block is unable to catch the exception and the
exception message gets printed on the console, which interrupts code
execution, still the finally block will get executed.
Let's take an example:
Try to run the above code for two different values:

Enter some integer value as numerator and provide 0 value for
denominator. Following will be the output:

1. You have divided a number by zero, which is not allowed.

2. Code execution Wrap up!

3. Will this get printed?

As we have handled the ZeroDivisionError exception class hence first
the except block gets executed, then the finally block and then the rest

of the code.
Now, some integer value as numerator and provide some string value
for denominator. Following will be the output:

4. Code execution Wrap up!

5. Traceback (most recent call last):

6. File "main.py", line 4, in <module>

7. b = int(input("Enter denominator number: "))

8. ValueError: invalid literal for int() with base 10: 'dsw'

As we have not handled the ValueError exception, hence our code
will stop execution, exception will be thrown, but still the code in
the finally block gets executed.

Exception in except block
We use the except block along with try block to handle exceptions, but what
if an exception occurred inside the except block. Well the finally block will
still get executed.

try block

try:

 a = 10

 b = 0

 print("Result of Division: " + str(a/b))

except block handling division by zero

except(ZeroDivisionError):

 print("Result of Division: " + str(a/b))

finally:

 print("Code execution Wrap up!")

Code execution Wrap up!

Traceback (most recent call last):

 File "main.py", line 4, in <module>

 print("Result of Division: " + str(a/b))

ZeroDivisionError: division by zero

During handling of the above exception, another exception occurred:

Traceback (most recent call last):

 File "main.py", line 7, in <module>

 print("Result of Division: " + str(a/b))

ZeroDivisionError: division by zero

Clearly the finally block was the first to be printed on the console follwed by
the first exception message and then the second exception message.

4. Python Exception
Handling: raise Keyword

While the try and except block are for handling exceptions, the raise keyword
on the contrary is to raise an exception.
Following is the syntax:

raise EXCEPTION_CLASS_NAME

Taking a simple usage example:

raise ZeroDivisionError

Traceback (most recent call last):

 File "main.py", line 1, in <module>

 raise ZeroDivisionError

ZeroDivisionError: division by zero

If you have a piece of code where along with exception handling you have
put in place some conditional statements to validate input etc, then in case of
the conditions failing we can either just print a message or simple raise an
exception which can then get handled by the common exception handling
mechanism.
See the code below,

a = 10

b = 9

try:

 print(a/b)

except ZeroDivisionError:

 print("Please enter valid integer value")

Consider the above code where we have handled ZeroDivisionError, in this
code we want to add a new validation for restricting user from inputting
negative values.
Then we can simply add a new condition and use the raise keyword to raise
an exception which is already handled.

a = 10

b = 9

try:

 # condition for checking for negative values

 if a < 0 or b < 0:

 # raising exception using raise keyword

 raise ZeroDivisionError

 print(a/b)

except ZeroDivisionError:

 print("Please enter valid integer value")

By this example we want to explain to you why and where we should
use raise keyword to explicitly raise an exception.

raise Without Specifying Exception Class

When we use the raise keyword, it's not necessary to provide an exception
class along with it. When we don't provide any exception class name with
the raise keyword, it reraises the exception that last occured.
This is used generally inside an except code block to reraise an exception
which is catched.
For example

a = 10

b = 0

try:

 print(a/b)

except ZeroDivisionError:

 raise

Traceback (most recent call last):

 File "main.py", line 4, in

 print(a/b)

ZeroDivisionError: division by zero

raise With an Argument
We can also provide an argument while raising an exception which is
displayed along with the exception class name on the console.
We can pass any string for describing the reason for the exception or
anything else.

raise ValueError("Incorrect Value")

Traceback (most recent call last):

 File "main.py", line 1, in <module>

 raise ValueError("Incorrect Value")

ValueError: Incorrect Value

Chapter 7: Multithreading

1. Introduction to Multithreading In
Python
Threads
Threads are lightweight processes (subparts of a large process) that can run
concurrently in parallel to each other, where each thread can perform some
task. Threads are usually contained in processes. More than one thread can
exist within the same process. Within the same process, threads share
memory and the state of the process.

Types Of Thread

There are two kinds of thread:
Kernel-level threads

User level threads

Below we have explained a few differences between the two:

What is Multithreading?
Now that we have a basic idea about what threads are, let's try to understand
the concept of Multithreading.
Modern computers have a CPU that has multiple processing cores and each
of these cores can run many threads simultaneously which gives us the ability
to perform several tasks concurrently. This process of running multiple
Threads concurrently to perform tasks parallely is called Multithreading.
Multithreading provides the following benefits:

Multiple threads within a process share the same data space and can,
therefore, share information or communicate with each other more
easily than if they were separate processes.

Threads do not require much memory overhead; they are cheaper than
processes in terms of memory requirements.

Multithreaded programs can run faster on computer systems with
multiple CPUs because these threads can be executed concurrently.

Time for an Example
Let's say you create a simple application for an Event's registration where
attendees must register if they wish to attend the event. You have a simple
HTML form for the users to fill in, and a backend which is a single threaded
application.
As the application is single threaded, it can only process one request at a
time. But what if the event is a "Coldplay's Music Concert" where millions of
people want to register. Processing one request at a time will drastically slow
down the performance.
So, we make the application multi-threaded and start multiple threads inside
it hence allowing parallel processing.

Multithreading in Python
For performing multithreading in Python threading module is
used.The threadingmodule provides several functions/methods to implement
multithreading easily in python.
Before we start using the threading module, we would like to first introduce
you to a module named time, which provides a time(), ctime() etc functions
which we will be using very often to get the current system time and another
crucial function sleep() which is used to suspend the execution of the current
thread for a given number of seconds.
For example,

Now let's see how we can use the threading module to start multiple threads.
Code Example:

Let's try to understand the above code:
We imported the thread class using import threading statement and we also
imported the time module. To create a new thread, we create an object of
te Thread class. It takes the following arguments:
target: The function which will be executed by the thread.
args: The arguments to be passed to the target function. We can pass multiple
arguments separated by comma.
In the example above, we created 2 threads with different target functions
i.e. thread1(i) and thread2(i).
To start a thread, we have used the start() method of the Thread class.
We have also used the time.sleep() method of the time module to pause the
execution of thread1 for 3 seconds.
Once the threads start, the current program (you can think of it as the main
thread) also keeps on executing. In order to prevent the main program from
completing its execution until the thread execution is complete, we use
the join() method.
As a result, the current program will wait for the completion of t1and t2 and
only after their execution is finished, the remaining statements of the current
program will get executed i.e the statement print('Execution completed.').
You should try running the above code once after commenting out the code
on line number 16,17 where we use the join method and see the result.
So with this our basic introduction to multithreading in python is completed
and now we know how to create and start multiple threads in python.

2. Threading Module In Python
As we have seen in the previous tutorial, threading module is used for
creating, controlling and managing threads in python. In this tutorial, we will
discuss about various functions and object types defined by
the threading module.

threading Module Functions
This module provides the following functions for managing threads:
Here is the code snippet from last tutorial, we will be using this to see the
various functions provided by the threading module in action.

threading.active_count() Function

This function returns the number of Thread objects currently alive.

import time

import threading

def thread1(i):

 time.sleep(3)

 #print('No. printed by Thread 1: %d' %i)

def thread2(i):

 time.sleep(3)

 #print('No. printed by Thread 2: %d' %i)

if __name__ == '__main__':

 t1 = threading.Thread(target=thread1, args=(10,))

 t2 = threading.Thread(target=thread2, args=(12,))

 t1.start()

 t2.start()

 print("No. of active threads: " + threading.active_count())

 t1.join()

 t2.join()

No. of active threads: 3

Try running the this code in the terminal above. You will see the number of
thread count to be 3, because we have created 2 threads and there in the main
thread in which the complete execution is taking place.

threading.current_thread()
This function will return the current Thread object, corresponding to the
caller's thread of control(which is in the control of caller currently). If the
caller's thread of control was not created through the threading module(for
example the main thread), then a dummy thread object with limited
functionality is returned.

import time

import threading

def thread1(i):

 time.sleep(3)

 #print('No. printed by Thread 1: %d' %i)

def thread2(i):

 time.sleep(3)

 #print('No. printed by Thread 2: %d' %i)

if __name__ == '__main__':

 t1 = threading.Thread(target=thread1, args=(10,))

 t2 = threading.Thread(target=thread2, args=(12,))

 t1.start()

 t2.start()

 print("Current thread is: " + threading.current_thread())

 t1.join()

 t2.join()

Current thread is: <_MainThread(MainThread, started 16152)>

threading.get_ident()
This function returns the thread identifier of the current thread. This is a
nonzero integer value. If we started the thread, then this method will return its
identifier, otherwise, it will return None.
We can use this method to index a dictionary of thread-specific data. Thread
identifiers may be recycled when a thread exits(stops) and another thread is
created.

threading.get_ident()

140578859194112

threading.enumerate()
This method returns a list of all Thread objects currently alive. The list
includes daemonic threads(when the program quits, all the daemon threads
associated with it are killed automatically), dummy thread objects created by

the current thread, and the main thread.
Terminated threads and threads that have not yet been started are not present
in this list.

threading.enumerate()

[<_MainThread(MainThread, started 139890175817472)>, <Thread(Thread-1, started
139890151225088)>, <Thread(Thread-2, started 139890142832384)>]

threading.main_thread()
This method returns the main Thread object. In normal conditions,
the main thread is the thread from which the python interpreter was started.

threading.main_thread()

<_MainThread(MainThread, started 139890175817472)>

threading.settrace(fun)
This method is used to set a trace function/hook for all the threads started
using the threadingmodule. The trace funtion is passed
to sys.settrace() method for each thread, which is attache to the thread before
the run() method is called.
The callback function which we want to act as the trace function will receive
three arguments, frame (the stack frame from the code being run), event (a
string naming the type of notification), and arg (an event-specific value)

def hello(frame, event, arg):

 print("Hello, I am a trace hook.")

threading.settrace(hello)

Try updating the code in the terminal at the top. Put the hello function outside
the main method and the statement threading.settrace(hello) just above the

statement where we call the start method for the threads.

threading.setprofile(fun)
This method is used to set a profile function for all threads started from the
threading module. Just like the trace funtion, profile function is also passed
to sys.setprofile() method for each thread, which is attache to the thread
before the run() method is called.

threading.setprofile(hello)

threading.stack_size([size])
This method returns the thread stack size utilised when creating new threads.
The size argument is optional and can be used to set the stack size to be used
for creating subsequent threads, and must be 0 or a positive integer
(D=default value is 0).
If changing the thread stack size is unsupported, a RuntimeError is raised.
If the specified stack size is invalid, a ValueError is raised.
Currently 32 KiB is the minimum stack size which is supported to provide
enough stack space for the interpreter.

threading.TIMEOUT_MAX
Apart from the above specified functions, the threading module also defines a
constant. If you specify a timeout value which is greater than the value of
the TIMEOUT_MAX constant, you will get an OverflowError.

threading Module Objects
Apart from the functions specified above, the threading module also provides

many classes whose objects are very useful in creating and managing threads.
The above table gives a brief introduction of various object types in python
threading module. We will discuss about all these objects in details in the
next few tutorials.

3. Thread class and its Object -

Python Multithreading
In the threading module the most popular and the most used call is
the Thread class, which is primarily used to create and run
threads. Thread class provides all the major functionalities required to create
and manage a thread.
Thread objects are the objects of the Thread class where each object
represents an activity to be performed in a separate thread of control.
There are two ways to create the Thread object and specify the activity to be
performed:

by passing a callable object to the constructor

or, by overriding the run() method in a subclass.

Thread object which is created using constructor or run method can be started
by using start() method. Whenever a Thread object starts a new thread then
internally it's run() method is invoked.
Here is a simple example:
In the example above, we have also used the time module to make one of the
thread sleep.
Basic syntax of the Thread class constructor is:

Thread(group=None, target=None, name=None, args=(), kwargs={})

We will explain the arguments of the Thread class constructor in the section
below.

How Thread works?
Once we initialize a thread using the Thread class constructor, we must call
its start() method to start the thread.
When the thread starts, the thread is considered alive and active. When
its run() method terminates, either normally, or due to an unhandled
exception then the thread stops being alive or active. The isAlive() method
tests whether the thread is alive or not at any given point of time.
Other threads can call a thread's join() method to join any thread. This blocks
the calling thread until the thread whose join() method is called is terminated.
For example, in the code above, from the main thread, we
call t1.join() and t2.join(), hence the main thread will wait for the
threads t1 and t2 to terminate and then end.
Every thread has a name associated with it. The name can be passed to the
constructor, or we can set or retrieve name by
using setname() and getname() methods respectively.
A flag daemon thread can be associated with any thread. The significance of
this flag is that the entire python program exits when only daemon threads are
left. The flag can be set or retrieved by using setDaemon() method
and getDaemon() method respectively.
The main thread object corresponds to the initial thread of control in the
python program. It is not a daemon thread.

Functions and Constructor in the Thread class

Now that we have seen a basic threading program with threads running, it's
time to understand the code along with exploring all the important methods
provided by the Thread class.

Thread class Constructor

Following is the basic syntax of the Thread class constructor:

Thread(group=None, target=None, name=None, args=(), kwargs={})

The constructor allows many arguments, some of which are required while
some are not. Let's see what they are:

group: Should be None. It is reserved for future extension.
target: This is the callable object or task to be invoked by
the run() method. As you can see in the code example at the top, we
have specified the function names thread1 and thread2 as the value
for this argument. It's default value is None.
name: This is used to specify the thread name. By default, a unique
name is generated following the format Thread-N, where N is a small
decimal number.
args: This is the argument tuple for the target invocation. We can
provide values in it which can be used in the traget method. It's default
value is empty, i.e. ()
kwargs: This is keyword argument dictionary for the target invocation.
This defaults to {}.

start() method
This method is used to start the thread's activity. When we call this method,
internally the run() method is invoked which executes the target function or
the callable object.

run() method
Method representing the thread's activity.
You may override this method in a subclass extending the Thread class of the
threading module. The standard run() method invokes the callable object
passed to the object's constructor as the target argument with sequential and
keyword arguments taken from the args and kwargs arguments, respectively.
Here we have a simple example, where we have created a subclass in which
we will override the run() method.

join([timeout]) method
When we call this method for any thread, it blocks the calling thread until the
thread whose join() method is called terminates, either normally or through
an unhandled exception.
If you want to provide the timeout argument, it should be a floating point
number.

getName() method
This method is used to return the thread's name.

setName(name) method
Used for setting the thread's name. The name is a string used for
identification purposes only.

isAlive() method
This method returns whether the thread is alive or not. A thread is alive from
the moment the start() method returns until its run() method terminates.

isDaemon() method
This method is used to get the value of the thread's daemon flag.

setDaemon(daemonic) method
This method is used to set the thread's daemon flag to the Boolean
value daemonic. This must be called before start() method is called.
The entire Python program exits when no active non-daemon threads are left.

4. Thread Synchronization using
Event Object
It's time to learn more about threads in python. In this tutorial we will be
covering an important classe, the Event class which is used for thread
synchronization in python.
This class is used for inter thread communication by generating events.

Python Multithreading: Event Object
The Event class object provides a simple mechanism which is used for
communication between threads where one thread signals an event while the
other threads wait for it. So, when one thread which is intended to produce
the signal produces it, then the waiting thread gets activated.
An internal flag is used by the event object known as the event flag which
can be set as true using the set() method and it can be reset to false using
the clear() method.
The wait() method blocks a thread until the event flag for which it is waiting
is set true by any other thread..
Following are the useful functions used along with an event object:

Initialize Event object

We can initialize an Event object as follows:

import threading

are_you_coming = threading.Event()

When we initialize an event object like this the internal flag is set to false by
default.

isSet() method
This method returns true if and only if the internal flag is true.

import threading

are_you_coming = threading.Event()

print(are_you_coming.isSet())

set() method

When this method is called for any event object then
the internal flag is set to true. And as soon
as set() methos is called for any event all threads
waiting for it are awakened.

clear() method

This method resets the internal flag to false.
Subsequently, threads calling wait() on the event for
which clear() is called, it will block until the internal
flag is not true again.

wait([timeout]) method
When we have to make any thread wait for an event, we can do so by calling
this method on that event which has the internal flag set to false, doing so
blocks the thread until the internal flag is true for the event.
If the internal flag is true on entry, then the thread will never get blocked.
Otherwise, it is blocked until another thread calls set() to set the flag to true,
or until the optional timeout occurs. The timeout argument specifies a timeout
for the operation in seconds.

Time for an Example
Let's have a simple code example to demonstrate the usage of Event class
object.
In the code below we will create a thread and make it wait for an event which
will be generated by the main thread, releasing the first thread.
In the above program we have also used the timeout property of
the wait() method.
When a thread calls wait([timeout]) method, the method returns a boolean
value true if the wait is released on receiving the event object, else it
returns false if the wait is released due to timeout.
To test this, change the value of timeout sent as argument args=(e,4) on line
18 and keep it less than the sleep time, for example set the timeout value to 2

and see the output.

5. Timer Object - Python
Multithreading
Timer objects are created using Timer class which is a subclass of
the Thread class. Using this class we can set a delay on any action that should
be run only after a certain amount of time has passed(timer) and can easily be
cancelled during that delay.
Timers are started, just like normal threads, by calling their start() method. A
timer thread can be stopped (before its action has begun) by calling
its cancel() method.
Timer object is generally used to implement scheduled tasks which supposed
to be executed only after a certain instant of time.
Also, its not necessary that the Timer object will be executed exactly after the
scheduled time as after that the python intrepreter looks for a thread to
execute the timer object task, which if not available leads to more waiting.

Syntax for creating Timer object
Following is the syntax for the Timer class constructor:

threading.Timer(interval, function, args=[], kwargs={})

This way we can create a timer object that will run the function with
arguments args and keyword arguments kwargs, after interval seconds have
passed.

Methods of Timer class

In the Timer class we have two methods used for starting and cancelling the
execution of the timer object.

start() method
This method is used to start the execution of the timer object. When we call
this method, then the timer object starts its timer.

cancel() method
This method is used to stop the timer and cancel the execution of the timer
object's action. This will only work if the timer has not performed its action
yet.

Time for an Example
Below we have a simple example where we create a timer object and start it.

import threading

def task():

 print("timer object task running...")

if __name__=='__main__':

 t = threading.Timer(10, task)

 t.start() # after 10 seconds, task will be executed

The above program is a simple program, now let's use the cancel method to
cancel the timer object task's execution.
In the program above, first comment the code on line number 13 and 14 and

run the program, then uncomment those lines and see the cancel() method in
action.

6. Condition Object - Thread
Synchronization in Python
In order to synchronize the access to any resources more efficiently, we can
associate a condition with tasks, for any thread to wait until a certain
condition is met or notify other threads about the condition being fulfilled so
that they may unblock themselves.
Let's take a simple example to understand this. In the Producer Consumer
problem, if there is one Produces producing some item and one Consumer
consuming it, then until the Producer has produced the item the Consumer
cannot consume it. Hence the Consumer waits until the Produced produces an
item. And it's the duty of the Producer to inform the Consumer that an item is
available for consumption once it is successfully produced.
And if there are multiple Consumers consuming the item produced by the
Producer then the Producer must inform all the Consumers about the new
item produced.
This is a perfect usecase for the condition object in multithreading in python.

Condition object: wait(), notify() and notifyAll()
Now that we know what the condition object is used for in python
multithreading, let's see the syntax for it:

condition = threading.Condition([lock])

The condition object takes in an optional lock object as argument. If we do
not provide anything then it creates a default lock.
A condition object has acquire() and release() methods that call the

corresponding methods of the associated lock. It also has a wait() method,
and notify() and notifyAll() methods. These three must only be called after
the calling thread has acquired the lock.

Condition class methods
Following are condition class methods:

acquire(*args) method
This method is used to acquire the lock. This method calls the
corresponding acquire() method on the underlying lock present in the
condition object; The return value is whatever that method returns.

release() method
this method is used to release the lock. This method calls the
corresponding release() method on the underlying lock present in the
condition object.

wait([timeout]) method
This method is used to block the thread and make it wait until some other
thread notifies it by calling the notify() or notifyAll() method on the same
condition object or until the timeout occurs.
This must only be called when the calling thread has acquired the lock.
When called, this method releases the lock and then blocks the thread until it
is awakened by a notify() or notifyAll() call for the same condition variable
from some other thread, or until the timeout occurs.
This method returns True if it is released because
of notify() or notifyAll() method else if timeout occurs this method will
return False boolean value.

notify() method

It wakes up any thread waiting on the corresponding condition. This must
only be called when the calling thread has acquired the lock. Also, calling
this method will wake only one waiting thread.

notifyAll() method
It wakes up all the threads waiting on this condition. This method acts
like notify() method, but wakes up all the waiting threads instead of one.

Time for an Example!
In the code example below we have implemented a simple producer-
consumer solution, where the producer produces an item and adds it to a list
from which the consumer is consuming the items.
Few important takeaways from the code example above:

1. We have created a class SomeItem which has a list which acts as the
shared resource between the producer and consumer thread.

2. The producer thread is randomly generating some list items and
adding it to the list.

3. The consumer thread tries to consume the item, if item is not found, it
starts to wait. If the producer sends a notification to the consumer about
the item creation before its timeout, then the consumer consumes the
item else it exits due to timeout.

This is a very simple example covering all the usecases of condition object.
Try running the above program with 2 consumer threads and single producer
thread.

7. Barrier Object - Python
Multithreading

Barrier object is created by using Barrier class which is available in the
threading module. This object can be used where we want a set of threads to
wait for each other.
For example, if we have two threads and we want both the threads to execute
when both are ready. In such situation both the threads will call
the wait() method on the barrier object once they are ready and both the
threads will be released simultaneously only when both of them have called
the wait() method.
Following is the syntax of the Barrier class to initialize a barrier object:

threading.Barrier(parties, action=None, timeout=None)

Where, parties specifies the number of threads waiting at the
barrier, action can be used to specify a function which will be executed by
any one thread waiting for the barrier and timeout is used to specify a timeout
value in seconds after which the barrier will be released from all the waiting
threads.

Functions provided by Barrier class
Following are the function provided by the Barrier class:

wait(timeout=None) method
When we want a set of threads to wait for each other, we initialise the barrier
object with the number of threads specified as parties parameter while barrier
object creation.
Then, the barrier will be released only when the same number of threads call
the wait() method of the barrier object.
If in a thread we provide the timeout value while calling the wait() method,
then that thread will get released from the barrier once the timeout time is
passed.
This method returns an integer value from 0 to parties-1. We can use this

value to identify which all threads have reached the waiting point of the
barrier and which all are still not there, for example:

i = barrier.wait()

if i == 0:

 # Only one thread Will be allowed to print this

 print("0th thread passed the barrier")

The return value of the wait() method can be used for carrying out some clean
up task for example if we have 3 threads doing some work and using a
temporary file to store data, once the threads are done, we can put a check on
the wait() method that when the last thread reaches its waiting point and the
barrier is to be released, before that delete the file.

i = barrier.wait()

if i == 2:

 # delete the temporay file

If the wait call times out, the barrier is put into the broken state.
The wait() method may raise a BrokenBarrierError if the barrier breaks or
resets as a thread waits.

reset() method
This function resets the barrier to its default, empty state. If there are threads
waiting for the barrier to get released will receive BrokenBarrierError.

abort() method
This method when called on a barrier puts it into the broken state. Once this
method is called by any of the waiting thread, the rest of the threads waiting
for the barrier to be released will receive BrokenBarrierError.

We may want to use this method in case of some deadlock situation to release
the waiting threads.

parties
This returns the number of threads we need to pass the barrier.

n_waiting
This returns the number of threads that currently are waiting for the barrier to
be released.

broken
This is a Boolean value that is True if the barrier is in the broken state.

Time for an Example!
Below we have a simple example where we have two threads
representing server and client where in the client thread will wait for the
server to get ready before sending any request to it.
In the above code, try calling the abort() method in either client or server and
see what happens. You might have to use the try block and catch
the BrokenBarrierError in the code.

Chapter 8: Python Logging

1. Python Logging Basic
Configurations
To configure the python logging module, to set the log level, log format, etc.,
we can use the basicConfig(**kwargs) method where **kwargs in the
function definition means this function takes variable length arguments,
which should be passed in the key-value form.
Some commonly used parameters in the basicConfig() function is given
below:

level: With the help of this parameter the root logger will be set to
the specified severity level, like DEBUG, INFO, ERROR, etc.
filename: This parameter is mainly used to specify the file name if we
want to store the logs in a file.
filemode: If the filename is given, the file is opened in this mode. The
default mode is a, which means append.
format: This is used to specify the format of the log message. For
example, if you want to add timestamp with the logs, or the name of the
python script or maybe the function or class name in the logs, then we
can specify the appropriate format for that.

In the basicConfig() function we can either provide the level parameter with
an appropriate value, filename and filecode for printing logs in file, and
the format parameter to specify the logs, or you can specify all the
parameters together, that is the beauty of **kwargs, which means the number
of arguments that can be supplied to a function is not fixed.

Let's take an Example

Let us take a look at the example for the clear understanding of this method:

import logging

logging.basicConfig(level=logging.INFO)

logging.info('This is an info message.This will get logged.')

INFO:root: This is an info message. This will get logged.

All events at or above INFO level will now get logged.

Points to remember:

It is important to note here that calling basicConfig() to configure the
root logger works in the case only if the root logger has not been
configured before. Basically, this function can only be called once.
Also debug(), info(), warning(), error(), and critical(), all these
functions internally call basicConfig() method without any arguments
automatically if it has not been called before.
This means that after the first time one of the above-given functions is
called, you can no longer configure the root logger because they
would have called the basicConfig() function internally.

Thus the default setting in basicConfig() is to set the logger to write to the
console in the following format:
ERROR:root: This is an error message

With log level, logger name and then the log message.

Store Logs in File
We can use the basicConfig() method to store logs in a file. How we can do
so, we will learn in the next tutorial where we will cover how to store Python
code logs in a file.

Set Format of Logs

We can configure the logging module to print logs in a any format we want.
There are some standard formats which are universally used, and we can

configure the python logger to print logs in those formats.
There are some basic components of logs that are already a part of
the LogRecord and we can easily add them or remove them from the output
format.
Let's take a few examples to understand this.

Add process ID to logs with loglevel and message

If you want to include the process ID for the running python script along
with the log level and message then the code snippet for the same is given
below:

import logging

logging.basicConfig(format='%(process)d-%(levelname)s-%(message)s')

logging.warning('This message is a warning')

1396-WARNING-This message is a warning

In the code above, in the basicConfig() method, we have set
the format parameter with the format string as value in which we have
specified, what components we want in our log, along with specifying
its datatype, like d with process to print the integer process Id,
then s for loglevel which is string value, and same for the message
Also, in the code above, we can set the format with the LogRecord attributes
set in any order.

Add Timestamp to logs with log message

You can also add date and time info(timestamp) to your logs along with the
log message. The code snippet for the same is given below:

import logging

logging.basicConfig(format='%(asctime)s - %(message)s', level=logging.INFO)

logging.info('This message is to indicate that Admin has just logged in')

2020-06-19 11:43:59,887 - This message is to indicate that Admin has just logged in

In the above code %(asctime)s adds the time of the creation of
the LogRecord. Also, we have configured the log level too with
code level=logging.INFO.

Use the datefmt attribute

You can also change the format using the datefmt attribute, which uses
the same formatting language as the formatting functions in the datetime
module, such as time.strftime():

import logging

logging.basicConfig(format='%(asctime)s - %(message)s', datefmt='%d-%b-%y %H:%M:%S')

logging.warning('The Admin just logged out')

19-Jun-20 11:50:28 - The Admin just logged out

As you can see the log printed as the output of the above code has a date
format DD-MMM-YY along with time.

So, using the basicConfig(**kwargs) method, we can
configure the logs format as we want, like adding
timestamp to logs, adding process id to logs, printing
log level along with logs and log messages.

2. Python - Print Logs in a File
If you want to print python logs in a file rather than on the console then we
can do so using the basicConfig() method by
providing filename and filemode as parameter.
The format of the message can be specified by using format parameter
in basicConfig() method.
Let us take a basic example to print logs to a file rather than on the console.
The code snippet is given below:

import logging # first of all import the module

logging.basicConfig(filename='std.log', filemode='w', format='%(name)s - %(levelname)s - %
(message)s')

logging.warning('This message will get logged on to a file')

root - ERROR - This message will get logged on to a file

The above output shows how the message will look like but keep in mind it
will be written to a file named std.log instead of the console.
In the above code, the filemode is set to w, which means the log file is
opened in “write mode” each time basicConfig() is called, and after each run
of the program, it will rewrite the file.
The default configuration for filemode is a, that is append, which means that
logs will be appended to the log file and adding logs to the existing logs.

Python Logging - Store Logs in a File
There are some basic steps and these are given below:

1. First of all, simply import the logging module just by writing import

logging.
2. The second step is to create and configure the logger. To configure

logger to store logs in a file, it is mandatory to pass the name of the
file in which you want to record the events.

3. In the third step, the format of the logger can also be set. Note that by
default, the file works in append mode but we can change that
to write mode if required.

4. You can also set the level of the logger.
So let's move on to the code now:

#importing the module

import logging

#now we will Create and configure logger

logging.basicConfig(filename="std.log", format='%(asctime)s %(message)s', filemode='w')

#Let us Create an object

logger=logging.getLogger()

#Now we are going to Set the threshold of logger to DEBUG

logger.setLevel(logging.DEBUG)

#some messages to test

logger.debug("This is just a harmless debug message")

logger.info("This is just an information for you")

logger.warning("OOPS!!!Its a Warning")

logger.error("Have you try to divide a number by zero")

logger.critical("The Internet is not working....")

The above code will write some messages to file named std.log. If we will
open the file then the messages will be written as follows:
2020-06-19 12:48:00,449 - This is just harmless debug message

2020-06-19 12:48:00,449 - This is just an information for you

2020-06-19 12:48:00,449 - OOPS!!!Its a Warning

2020-06-19 12:48:00,449 - Have you try to divide a number by zero

2020-06-19 12:48:00,449 - The Internet is not working...

You can change the format of logs, log level or any other attribute of
the LogRecord along with setting the filename to store logs in a file along
with the mode.

3. Python Logging Variable Data
Sometimes you would want to include some dynamic information from
your application in the logs.
As we have seen in examples till now, we print strings in logs, and we can
easily format and create strings by adding variable values to it. This can also
be done within the logging methods like debug(), warning(), etc.
To log the variable data, we can use a string to describe the event and
then append the variable data as arguments. Let us see how we will do this
with the help of an example given below:

Example

import logging

logging.warning('%s before you %s', 'Think', 'speak!')

Object Description

WARNING:root: Think before you speak!

In the above code, there is merging of variable data into the event
description message using the old, %s style of string formatting.
Also, the arguments that are passed to the method would be included
as variable data in the message.

There is Another way

As you can use any formatting style, the f-strings introduced in Python
3.6 are also an amazing way to format strings as with their help the
formatting becomes short and easy to read:
Here is a code example:

import logging

name = 'Thomas'

logging.error(f'{name} raised an error in his code')

ERROR:root: Thomas raised an error in his code

4. Python Logging Classes and
Functions
In our previous tutorials, we have already seen how we can use and configure
the default logger named root, which is mainly used by the logging
module whenever we call its functions directly like this: logging.info().

Logger.info(msg) This function mainly helps to log a message with level INFO on this
logger.

Logger.warning(msg) This function mainly helps to log a message with level WARNING on
this logger.

Logger.error(msg) This function mainly helps to log a message with level ERROR on this
logger.

Logger.critical(msg) This function mainly helps to log a message with level CRITICAL on
this logger.

Logger.setLevel(lvl)
This function is mainly used to set the threshold of the logger to lvl and
that indicates all the messages below this level

will be ignored.

Logger.exception(msg) This function mainly helps to log a message with level ERROR on this
logger.

Logger.log(lvl, msg) This function will Logs a message with integer level lvl on this logger.

Logger.filter(record)
This method is mainly used to apply the logger’s filter to the provided
record and it will return True

if the record is to be processed. otherwise, it will return False.

Logger.addFilter(filt) It is used to adds a specific filter filt to this logger.

Logger.removeFilter(filt) It is used to adds a specific filter filt from this logger.

Logger.hasHandlers() This is mainly used to check if the logger has any handler configured
or not.

Logger.addHandler(hdlr) In order to add a specific handler hdlr to this logger.

Logger.removeHandler(hdlr) In order to remove a specific handler hdlr to this logger.

You can also define your own logger by creating an object of
the Logger class, especially in the case if your application has multiple
modules.
Let us look at some of the classes and functions in the logging module.
The most commonly used classes which are already defined in the logging
module are given below:

1. Logger class
The Logger is the class whose objects will be used in the application code
directly to call the functions.

2. LogRecord
The Logger class automatically create LogRecord objects which contain the
information related to the event being logged, or in simple words the log
message. It contains information like the name of the logger, the function,
the line number, the message, the process id, etc.

3. Handler
The Handlers are mainly used to send the LogRecord to the required output
destination, it can be console or a file
The class Handler is the base for
subclasses like StreamHandler, FileHandler, SMTPHandler, HTTPHandler,
and more. These subclasses also send the logging outputs to corresponding
destinations, like sys.stdout or a disk file.

4. Formatter
The Formatter is a class where you specify the format of the
output by specifying a string format that mainly lists out the attributes the
output should contain.

Several Logger objects

In Logging Module items with all caps are constant, the capitalize items
indicate classes, and the items which start with lowercase letters are methods.
Below we have a table consisting of several logger objects offered by the
Logging module:

Chapter 9: Python With MySQL
1. MySQL with Python
In this tutorial, we will learn What is MySQL, What are the prerequisites to
use MySQL in Python and from where you can download and install
MySQL and MySQL Python Connector.
First of all, let us see what are the Prerequisites needed to learn MySQL in
Python:

Python MySQL - Prerequisites
Below are the prerequisites needed in order to gain complete understanding:

Python Variable, Data types, Control Structures, Loops, etc.
Anyone who wants to put their step into this tutorial must be aware of
these topics.
Basics of SQL. If you want to learn the basics of SQL then here is the
link for our free course: Learn SQL.

Note:
In this tutorial our main aim to teach you how you can work with
MySQL in Python.

What is MySQL?
Let us first learn what MySQL is:
MySQL is an open-source, relational database management
system(RDBMS) that is based on Structured Query Language(SQL). One
important thing to note here is that MySQL is used to store data and it is not
used to create programs; Thus it is not a Programming Language.

Thus SQL can be used to program a MySQL Database.
The main advantage of MySQL is that it can run on any of the
Operating System.
It is one of the Popular Database.

If you want to practice the code examples in our upcoming tutorials then it is

mandatory for you to install MySQL on your Computer. It is freely available
you can download and install the MySQL database from its official website :
https://www.mysql.com/downloads/
After installing MySQL the next step is to install mysql connector for the
python. Now the question arises what is MySQL connector?

MySQL Connector
Basically Python needs a MySQL Driver which is used to access the
MySQL Database an in this case "MySQL Connector" is the Driver
MySQL Connector for Python is a connector that enables the Python
programs to access the MySQL database.
There are two ways to download the MySQL Connector:

1. The first way is you can download and install it from the link given:
https://dev.mysql.com/downloads/connector/python/

2. Another way is By Using PIP to install the "MySQL Connector" as
PIP is already installed in your Python environment. So you can
download and install just by navigating your command line to the
location of PIP and By writing:

python -m pip install mysql-connector-python

We Recommend you to use the second way that is by PIP; also it is your
choice.
Now, After this MySQL Driver that is "MySQL Connector" is
downloaded and installed successfully in your Computer. But in order to
confirm, we can Test the MySQL Connector.

Test the MySQL Connector

To check if the MySQL connector is installed correctly or not in your System
you just need to write the following code:

import mysql.connector

If the above code runs successfully, without raising any error then it means
installation is done correctly.
Now we will create the connection with the help of which further we can
create the database, insert into it, and perform other queries too.

Creating the Connection

It is the first step that is creating the connection.
Now we will connect to the database using the username and
the password of MySQL. If you forgot your username or password, create
a new user with a password.

###Connecting to the database

###Let us import mysql.connector

import mysql.connector

Now connecting to the database using 'connect()' method

it takes 3 required parameters 'host', 'user', 'passwd'

mydb = mysql.connector.connect(

 host="localhost",

 user="yourusername",

 password="yourpassword"

)

print(mydb)

It will produce the Output as follows:
<mysql.connector.connection_cext.CMySQLConnection object at 0x0000023F50726518>

The above output indicates that you have connected to the MySQL
Database. In our further tutorial, we will start querying the database with
the SQL statements.

2. Python MySQL - Create Database
We will learn how to create a database or how to check if any
database exists already in MySQL using Python.
To create the database in MySQL we will use the "CREATE DATABASE"
statement.

Python MySQL - CREATE DATABASE
Below we have the basic syntax of the create database statement:

CREATE DATABASE database_name

Now we will create a database named "studytonight". Let us see how we
will create it:

Python MySQL - Create Database Example

Let us create a database named "studytonight".Given below is the code
snippet for the same:

#for our convenience we will import mysql.connector as mysql

import mysql.connector as mysql

db = mysql.connect(

 host = "localhost",

 user = "yourusername",

 passwd = "yourpassword"

)

Now Let us create an instance of 'cursor' class which is used to execute the 'SQL' statements in
'Python'

cursor = db.cursor()

creating a database called 'studytonight'

'execute()' method is used to compile a 'SQL' statement

below statement is used to create tha 'studytonight' database

cursor.execute("CREATE DATABASE studytonight")

In the case, if the database named "studytonight" already exists then the
above code will raise an error.
If there is no error it means the database is created successfully.
Now let us see how we can check all the databases in our system.

Python MySQL - List all Database

We can list down all the databases in MySQL using Python and in that list we
can also check if any particular Database is available or not.
To check if any database already exists SHOW DATABASES SQL statement
is used.
Let us see how:
To list out all the databases in the system.Below is the code snippet for the
same:

#for our convenience we will import mysql.connector as mysql

import mysql.connector as mysql

db = mysql.connect(

 host = "localhost",

 user = "yourusername",

 passwd = "yourpassword"

)

cursor = db.cursor()

cursor.execute("SHOW DATABASES")

for x in cursor:

 print(x)

The output of the above code will list out all the databases in the system:

('admin_panel',)

('information_schema',)

('mysql',)

('performance_schema',)

('sakila',)

('studytonight',)

('sys',)

('world',)

('xyz',)

As you can see in the code above, we have used Python for loop to iterate
over the cursor object and print the names of all the databases found.
Similarly, we can compare the name of databases to check if any particular
database already exists, before creating it using Python if condition.
So in this tutorial we learned how to create a new database in MySQL using
Python and how to list down all the MySQL databases in Python and print
them in console.

3. Python MySQL - Create and

List Table
Now we will learn how to create tables in any MySQL database in Python
and we will also see how to check if a table already exists or not by listing
down all the tables in a database using Python.

Python MySQL - Create Table
Basically, to store information in the MySQL database there is a need to
create the tables. It is also required to select our database first and then
create tables inside that database.
At the time of creating the connection, you can also specify the name of your
database, like given below:

import mysql.connector

db = mysql.connector.connect(

 host = "localhost",

 user = "yourusername",

 password = "yourpassword",

 database = "studytonight"

)

If the above code is executed without any errors then it means you have
successfully connected to the database named studytonight.

SQL Query to Create Table

To create a table in the selected database the following statement will be
used. Let us see the syntax:

CREATE TABLE table_name;

Let us create a table named students in the specified database, that
is studytonight
In the table students we will have the following
fields: name, rollno, branch, and address.

#for our convenience we will import mysql.connector as mysql

import mysql.connector as mysql

db = mysql.connect(

 host = "localhost",

 user = "yourusername",

 passwd = "yourpassword",

 database="studytonight"

)

cursor = db.cursor()

cursor.execute("CREATE TABLE students (name VARCHAR(255), rollno INTEGER(100), branch
VARCHAR(255), address VARCHAR(255))")

If this code executes without any error then it means the table has been
created successfully.
Now, If you want to check the existing tables in the database then you can
use the SHOW TABLES SQL statement.

List existing Tables in a Database

Now as we have created a table in our database. Let us check the tables that
exist in our database. Use the code given below:

#for our convenience we will import mysql.connector as mysql

import mysql.connector as mysql

db = mysql.connect(

 host = "localhost",

 user = "yourusername",

 passwd = "yourpassword",

 database="studytonight"

)

cursor = db.cursor()

getting all the tables which are present in 'datacamp' database

cursor.execute("SHOW TABLES")

tables = cursor.fetchall() ## it returns list of tables present in the database

showing all the tables one by one

for table in tables:

 print(table)

The output of the above code is as follows
('students',)

Python MySQL - Table with Primary Key
As we had created a table named students in our database, in which we will
store student data and fetch it whenever required. But while fetching data, we
might find students with same name and that can lead to wrong data getting
fetched, or cause some confusion.
So to uniquely identify each record in a table we can use Primary Key in
our tables. Let us see first what is a Primary key?

What is Primary Key?
A primary key is an attribute to make a column or a set of columns accept
only unique values. With the help of the primary key, one can find each row
uniquely in the table.
Watch this video to learn about DBMS Keys - DBMS Keys Explained with
Examples
Thus in order to identify each row uniquely with a number starting from
1. We will use the syntax as follows:

INT AUTO_INCREMENT PRIMARY KEY

Using the above code with any column, we can make its value as auto
increment, which means the database will automatically add an incremented
value even if you do not insert any value for that column while inserting a

new row of data to your table.

Add Primary Key during Table creation
Let us see how to add a primary key at the time of table creation. The code
snippet for the same is given below:

import mysql.connector as mysql

db = mysql.connect(

 host = "localhost",

 user = "yourusername",

 passwd = "yourpassword",

 database = "studytonight"

)

cursor = db.cursor()

creating the 'students' table with the 'PRIMARY KEY'

cursor.execute("CREATE TABLE students (name VARCHAR(255), rollno INTEGER(100) NOT
NULL AUTO_INCREMENT PRIMARY KEY, branch VARCHAR(255), address VARCHAR(255))")

If the above code runs without an error then it means you have successfully
created a table named "students" with the column rollno as primary key.

Python MySQL - Describe the Table
We can use the below python code to describe any table to see what all
columns it has and all the meta information about the table and all its
columns.

import mysql.connector as mysql

db = mysql.connect(

 host = "localhost",

 user = "yourusername",

 passwd = "yourpassword",

 database = "studytonight"

)

cursor = db.cursor()

cursor.execute("DESC students")

print(cursor.fetchall())

The output will be:

[('name', 'varchar(255)', 'YES', '', None, ''), ('rollno', 'int', 'NO', 'PRI', None, 'auto_increment'), ('branch',
'varchar(255)', 'YES', '', None, ''), ('address', 'varchar(255)', 'YES', '', None, '')]

Add Primary Key to Existing Table
Now in this example, we will assume that rollno column does not exist in
our student table. So we will learn how to add a column to be used as
primary key in an existing table.
Let us see how to create a primary key on an existing table. The code snippet

for the same is given below:

import mysql.connector as mysql

db = mysql.connect(

 host = "localhost",

 user = "root",

 passwd = "himaniroot@99",

 database = "studytonight"

)

cursor = db.cursor()

We are going to add rollno field with primary key in table students

cursor.execute("ALTER TABLE students ADD COLUMN rollno INT AUTO_INCREMENT
PRIMARY KEY")

print(cursor.fetchall())

In the above code we have used the SQL Alter Query to add a new column to
an existing table. You can use the describe table query to see the new added
column.
[('name', 'varchar(255)', 'YES', '', None, ''), ('branch', 'varchar(255)', 'YES', '', None, ''), ('address',
'varchar(255)', 'YES', '', None, ''), ('rollno', 'int', 'NO', 'PRI', None, 'auto_increment')]

So in this tutorial we have covered everything related to creating a new
MySQL table in python. We covered how to alter a table, how to list down all

the tables in a database, and how to define a column as a primary key.

4. Python MySQL - Insert data in

Table
We will learn how to insert a single row and insert multiple rows of data in
a MySQL table using Python.
To Insert data into a MySQL Table or to add data to the MySQL Table
which we have created in our previous tutorial, We will use the INSERT SQL
statement.
If you are new to SQL, you should first learn about the SQL INSERT
statement.

Python MySQL - INSERT Data
Let us see the basic syntax to use INSERT INTO statement to insert data
into our table:

INSERT INTO table_name (column_names) VALUES(data)

We can insert data in a table in two ways:

Inserting a single row at a time
Inserting multiple rows at a time

Inserting Single Row in MySQL Table

In this section, we will see the code example for inserting a single row of data
in a MySQL table:
We will be adding data to the students table we created in Python MySQL -
Create Table tutorial.

import mysql.connector as mysql

db = mysql.connect(

 host = "localhost",

 user = "root",

 passwd = "himaniroot@99",

 database = "studytonight"

)

cursor = db.cursor()

defining the Query

query ="INSERT INTO students(name, branch, address) VALUES (%s, %s,%s)"

There is no need to insert the value of rollno

because in our table rollno is autoincremented #started from 1

storing values in a variable

values = ("Sherlock", "CSE", "220 Baker Street, London")

executing the query with values

cursor.execute(query, values)

to make final output we have to run

the 'commit()' method of the database object

db.commit()

print(cursor.rowcount, "record inserted")

The output of the above code will be:

1 record inserted

Inserting Multiple Rows in MySQL Table
In this section, we will see the code example for inserting multiple rows of
data in a MySQL table.
To insert multiple rows into the table, the executemany() method is used. It
takes a list of tuples containing the data as a second parameter and
the query as the first argument.

import mysql.connector as mysql

db = mysql.connect(

 host = "localhost",

 user = "root",

 passwd = "himaniroot@99",

 database = "studytonight"

)

cursor = db.cursor()

defining the Query

query ="INSERT INTO students(Name, Branch,Address) VALUES (%s, %s, %s)"

storing values in a variable

values = [

 ("Peter", "ME","Noida"),

 ("Amy", "CE","New Delhi"),

 ("Michael", "CSE","London")

]

executing the query with values

cursor.executemany(query, values)

to make final output we have to run

the 'commit()' method of the database object

db.commit()

print(cursor.rowcount, "records inserted")

If all three rows were entered successfully, the output of the above code will
be:
3 records inserted

So in this tutorial we learned how we can insert data into MySQL table in
Python.

5. Python MySQL - Select data

from Table
We will learn how to retrieve data from MySQL table in python, both, the
complete table data, and data from some specific columns.

Python MySQL - SELECT Data

In MySQL, to retrieve data from a table we will use
the SELECT statement. The syntax for the same is given below:

SELECT column_names FROM table_name

Retrieve All records from MySQL Table
In order to get all the records from a table, * is used instead of column names.
Let us retrieve all the data from the students table which we inserted before:

import mysql.connector as mysql

db = mysql.connect(

 host = "localhost",

 user = "yourusername",

 passwd = "yourpassword",

 database = "studytonight"

)

cursor = db.cursor()

defining the Query

query = "SELECT * FROM students"

getting records from the table

cursor.execute(query)

fetching all records from the 'cursor' object

records = cursor.fetchall()

Showing the data

for record in records:

 print(record)

Thus the output of the above code will be:
('Ramesh', 'CSE', '149 Indirapuram', 1)

('Peter', 'ME', 'Noida', 2)

('Amy', 'CE', 'New Delhi', 3)

('Michael', 'CSE', 'London', 4)

Below we have a snapshot of the exact output when we run this python code:

In the next section we will learn how to retrieve data of certain columns from
a table.

Retrieve data from specific Column(s) of a Table
In order to select data from some columns of the table just mention the
column name after the SELECT in the syntax mentioned above:

import mysql.connector as mysql

db = mysql.connect(

 host = "localhost",

 user = "yourusername",

 passwd = "yourpassword",

 database = "studytonight"

)

cursor = db.cursor()

defining the Query

query = "SELECT name FROM students"

getting 'name' column from the table

cursor.execute(query)

fetching all usernames from the 'cursor' object

names = cursor.fetchall()

Showing the data

for name in names:

 print(name)

The above code will fetch the name column from the students table:
('Ramesh',)

('Peter',)

('Amy',)

('Michael',)

Selecting Multiple columns from a Table

You can also select multiple columns from a table at a time by providing
multiple column names in the above syntax. Let us see the code snippet given
below for clear understanding:

import mysql.connector as mysql

db = mysql.connect(

 host = "localhost",

 user = "yourusername",

 passwd = "yourpassword",

 database = "studytonight"

)

cursor = db.cursor()

defining the Query

query = "SELECT name, branch FROM students"

getting 'name', 'branch' columns from the table

cursor.execute(query)

fetching all records from the 'cursor' object

data = cursor.fetchall()

Showing the data

for pair in data:

 print(pair)

The above code will fetch both name and branch column both from the
table students:
('Ramesh', 'CSE')

('Peter', 'ME')

('Amy', 'CE')

('Michael', 'CSE')

To fetch the first record - fetchone()
In the above examples, we saw that all rows are fetched because we were
using fetchall() method. Now to fetch only a single-row fetchone() method
will be used. This method will return the first row from the records fetched
by the query. Let us see the code snippet given below:

import mysql.connector as mysql

db = mysql.connect(

 host = "localhost",

 user = "yourusername",

 passwd = "yourpassword",

 database = "studytonight"

)

cursor = db.cursor()

cursor.execute("SELECT * FROM students")

myresult = cursor.fetchone() ##fetches first row of the record

print(myresult)

Thus in the output the first row of the record will be fetched:
('Ramesh', 'CSE', '149 Indirapuram', 1)

So in this tutorial, we learned various ways to retrieve data from a MySQL
table in Python.

6. Python MySQL - Update Table
data

In this tutorial, we will learn how to Update MySQL table data in Python
where we will be using the UPDATE SQL query and the WHERE clause.
The UPDATE SQL query is used to update any record in MySQL table.

Python MySQL UPDATE: Syntax

Below we have the basic syntax of the UPDATE statement:

UPDATE table_name SET column_name = new_value WHERE condition

The above syntax is used to update any specific row in the MySQL table.
And to specify which specific row of data we want to update, we use
the WHERE clause to provide the condition to be matched while looking for
the right row of data to update.

Python MySQL UPDATE Table Data: Example
Let us update the record in the students table (from the Python MySQL

create table tutorial) by changing the name of the student whose rollno is 3.
The code is given below:

import mysql.connector as mysql

db = mysql.connect(

 host = "localhost",

 user = "yourusername",

 passwd = "yourpassword",

 database = "studytonight"

)

cursor = db.cursor()

defining the Query

query = "UPDATE students SET name = 'Navin' WHERE rollno = 3"

executing the query

cursor.execute(query)

final step is to commit to indicate the database

that we have changed the table data

db.commit()

To check if the data is updated successfully we can retrieve the students
table data using the given below code:

import mysql.connector as mysql

db = mysql.connect(

 host = "localhost",

 user = "yourusername",

 passwd = "yourpassword",

 database = "studytonight"

)

cursor = db.cursor()

defining the Query

query = "SELECT * FROM students"

getting records from the table

cursor.execute(query)

fetching all records from the 'cursor' object

records = cursor.fetchall()

Showing the data

for record in records:

 print(record)

The output of the above code is:
('Ramesh', 'CSE', '149 Indirapuram', 1)

('Peter', 'ME', 'Noida', 2)

('Navin', 'CE', 'New Delhi', 3)

Here is the snapshot of the actual output:

In the SELECT query too, we can use the WHERE clause to retrieve only the
data of the row with rollno 3 or any other condition.

7. Python MySQL - Delete Table
Data

We will learn how to DELETE MySQL table data in Python where we will
be using the DELETE SQL query and the WHERE clause.
The DELETE SQL query is used to delete any record from MySQL table.

Python MySQL DELETE: Syntax

The syntax for the same is given below:

DELETE FROM table_name WHERE condition

Note: In the above syntax, WHERE clause is used to specify the condition to
pin point a particular record that you want to delete. If you don't specify the
condition, then all of the records of the table will be deleted.

Python MySQL DELETE Table Data: Example
Let us see an example to delete the record in the students table (from
the Python MySQL create table tutorial) whose rollno is 4. The code is given
below:

import mysql.connector as mysql

db = mysql.connect(

 host = "localhost",

 user = "yoursername",

 passwd = "yourpassword",

 database = "studytonight"

)

cursor = db.cursor()

defining the Query

query = "DELETE FROM students WHERE Rollno = 4"

executing the query

cursor.execute(query)

final step to tell the database that we have changed the table data

db.commit()

If the above code runs without an error then it means that the row with rollno
= 4 is deleted successfully.
To check if it exists in the table or not you can use the code given below:

import mysql.connector as mysql

db = mysql.connect(

 host = "localhost",

 user = "yourusername",

 passwd = "yourpassword",

 database = "studytonight"

)

cursor = db.cursor()

defining the Query

query = "SELECT * FROM students"

getting records from the table

cursor.execute(query)

fetching all records from the 'cursor' object

records = cursor.fetchall()

Showing the data

for record in records:

 print(record)

The output for the above code is given below:
('Ramesh', 'CSE', '149 Indirapuram', 1)

('Peter', 'ME', 'Noida', 2)

('Amy', 'CE', 'New Delhi', 3)

Here is a snapshot of the actual output:

As we can see in the output above, the row with rollno=4 is successfully
deleted.

8. Python MySQL - Drop Table
We will learn how to delete a MySQL table or drop the table completely
from the database using Python.
To completely delete an existing table(both table data and table itself),
the DROP TABLE SQL statement is used.

Python MySQL DROP TABLE: Example

Let's assume we have a table with name customers in
the studytonight database. Then we can use the below code to drop that
table:

import mysql.connector as mysql

db = mysql.connect(

 host = "localhost",

 user = "yourusername",

 passwd = "yourpassword",

 database = "studytonight"

)

cursor = db.cursor()

We have created another table in our database named customers

and now we are deleting it

sql = "DROP TABLE customers"

cursor.execute(sql)

If the above code will execute without any error it means table
named customers is deleted succesfully.

Python MySQL - Drop Table if it exists
The IF EXISTS keyword is used to avoid error which may occur if you try to
drop a table which doesn't exist.
When we use the IF EXISTS clause, we are informing the SQL engine that if
the given table name exists, then drop it, if it doesn't exists, then do nothing.

import mysql.connector as mysql

db = mysql.connect(

 host = "localhost",

 user = "yourusername",

 passwd = "yourpassword",

 database = "studytonight"

)

cursor = db.cursor()

sql = "DROP TABLE IF EXISTS customers"

cursor.execute(sql)

If the code executes without an error, then it means the customers table is
deleted if it existed.
Here is the snapshot of the actual output:

So in this tutorial we learned how to drop a MySQL table using Python. This
is useful when we have some application which creates some temporary
tables to store some data and then after the processing, deletes those tables.

9. Python MySQL
- WHERE Clause

We will learn how to filter rows from the fetched resultset, or update a
specific row, or delete a specific row from a MySQL table using
the WHERE clause to specify the condition to find the record/row of data on
which the operation is performed.
So, WHERE clause is nothing but a way to provide a condition(or multiple
conditions) to the SQL engine, which is applied on the query resultset to filter
out the required records of data.

Python MySQL WHERE Clause
We have already used the WHERE clause in our previous tutorials:

Python MySQL - Update Table data

Python MySQL - Delete Table data

If you want to select data from a table based on some condition then you
can use WHERE clause in the SELECT statement.

The WHERE clause is mainly used for filtering the rows from the
result set.
It is helpful in fetching, updating, and deleting data from the MySQL
Table.

The syntax of using WHERE clause in SELECT statement is as follows:

SELECT column_name

FROM table_name

WHERE condition;

The above syntax is useful in fetching the records on the basis of some
conditions.

Using WHERE Clause
Below we have an example where we will fetch the row having rollno =
2 from our students table(from the Python MySQL create table tutorial):

import mysql.connector as mysql

###First create a connection between mysql and python

db = mysql.connect(

 host = "localhost",

 user = "yourusername",

 passwd = "yourpassword",

 database = "studytonight"

)

now create a cursor object on the connection object

created above by using cursor() method

cursor = db.cursor()

defining the Query

query = "SELECT * FROM students WHERE rollno= 2"

getting records from the table

cursor.execute(query)

fetching all records from the 'cursor' object

records = cursor.fetchall()

Showing the data

for record in records:

 print(record)

The output of the above code will be:

('Peter', 'ME', 'Noida', 2)

Here is the snapshot of the actual output:

10. Python MySQL - Orderby Clause
We will learn how to sort the result in any order(ascending or descending)
in MySQL.
The ORDER BY in MySQL is mainly used for the sorting purpose. That is
with the help of ORDER BY one can sort the result either
in Ascending or Descending Order.

By default ORDER BY statement will sort the result in the Ascending
order, or we can also use the ASC keyword.
In order to sort the result in the Descending order, the DESC keyword
will be used.

Below we have a basic syntax to sort the result in ascending order which is
the default:

SELECT column_names FROM table_name ORDER BY column_name

Python MySQL ORDER BY Example
Below we have an example in which we will sort the result in ascending
order. Let us see the code snippet given below:

import mysql.connector as mysql

db = mysql.connect(

 host = "localhost",

 user = "yourusername",

 passwd = "yourpassword",

 database = "studytonight"

)

cursor = db.cursor()

defining the Query

query = "SELECT * FROM students ORDER BY name"

getting records from the table

cursor.execute(query)

fetching all records from the 'cursor' object

records = cursor.fetchall()

Showing the data

for record in records:

 print(record)

The above code will sort the names in ascending order and the output will be
as follows:
('Amy', 'CE', 'New Delhi', 3)

('Michael', 'CSE', 'London', 4)

('Peter', 'ME', 'Noida', 2)

('Ramesh', 'CSE', '149 Indirapuram', 1)

Here is the snapshot of the actual output:

Python MySQL ORDER BY DESC

The syntax ORDER BY COLUMN_NAME DESC statement is used to sort
the resultset based on the specified column in descending order.
The syntax to use this statement is given below:

SELECT column_names FROM table_name ORDER BY column_name DESC

Now Let us sort the data in descending order by name column using
the DESC keyword with the ORDER BY clause. Let's see the code which is
given below:

import mysql.connector as mysql

db = mysql.connect(

 host = "localhost",

 user = "yourusername",

 passwd = "yourpassword",

 database = "studytonight"

)

cursor = db.cursor()

defining the Query

query = "SELECT * FROM students ORDER BY name Desc"

getting records from the table

cursor.execute(query)

fetching all records from the 'cursor' object

records = cursor.fetchall()

Showing the data

for record in records:

 print(record)

The output of the above code will be:
('Ramesh', 'CSE', '149 Indirapuram', 1)

('Peter', 'ME', 'Noida', 2)

('Michael', 'CSE', 'London', 4)

('Amy', 'CE', 'New Delhi', 3)

Here is the snapshot of the actual output:

11. Python MySQL - Limit Clause
We will learn how to limit the number of rows returned in a resultset with
the help of LIMIT clause added to the query in the python code.
The syntax to use this clause is given below:

SELECT {fieldname(s) | *} FROM tableName(s) [WHERE condition] LIMIT N;

The above syntax indicates the following things:

SELECT {fieldname(s) | *} FROM tableName(s): This part is used
to select the records that we would like to return in our query.

[WHERE condition]: The WHERE clause is optional, but if used then
it applies the filter on the result set.
LIMIT N: It is used to limit the records in the result. Here N starts
from 0 but if you will pass LIMIT 0(then it does not return any
record). If you will pass 6 then it will return the starting 6 rows in the
output. Suppose the records in the specified table are less than N, then
all the records from the table are returned in the result set.

Python MySQL LIMIT: Example
Let us select only two rows from the students table(from the Python MySQL
create table tutorial). The code for the same is given below:

import mysql.connector as mysql

db = mysql.connect(

 host = "localhost",

 user = "yourusername",

 passwd = "yourpassword",

 database = "studytonight"

)

cursor = db.cursor()

cursor.execute("SELECT * FROM students LIMIT 2")

myresult = cursor.fetchall()

for x in myresult:

 print(x)

The output of the above code will be as follows:
('Ramesh', 'CSE', '149 Indirapuram', 1)

('Peter', 'ME', 'Noida', 2)

Using OFFSET Keyword with LIMIT clause
If you do not want to start from the first position then by
using OFFSET keyword in the LIMIT query you can start from any other
position. Let us see the code example for the same:

import mysql.connector as mysql

db = mysql.connect(

 host = "localhost",

 user = "yourusername",

 passwd = "yourpassword",

 database = "studytonight"

)

cursor = db.cursor()

cursor.execute("SELECT * FROM students LIMIT 2 OFFSET 1")

myresult = cursor.fetchall()

for x in myresult:

 print(x)

In the above code LIMIT 2 means it will return the 2 rows and OFFSET
1 the resultset will start from the 1st row, means only row 2 is returned. Thus
the output is as follows:
('Peter', 'ME', 'Noida', 2)

('Navin', 'CE', 'New Delhi', 3)

Here is the snapshot of the actual output:

The OFFSET keyword isused to specify the starting point. For example if a
query returnd 100 rows of data and we have specifed the OFFSET as 50, then
data starting from 51st row till the 100th row will be returned.

12. Python MySQL - Table Joins
We will learn how to join two or more MySQL tables in Python.
In order to combine two or more tables in MySQL, JOIN statement is used.
One thing to note here is that there must be a common column in both

tables based on which this operation will be performed.
We have already created the students table in
the studytonight database(from the Python MySQL create table tutorial). Let
us create another table named results after that we will join both the tables.
Below we have code to create a table named results.
Both results and students table have one field common that is rollno.

You can directly run the query to create the new table in MySQL command
line.

Python MySQL - Joining two tables
Below we have a code snippet where we will join two
tables named results and students based on the column rollno:

import mysql.connector as mysql

db = mysql.connect(

 host = "localhost",

 user = "yourusername",

 passwd = "yourpassword",

 database = "studytonight"

)

cursor = db.cursor()

sql = "SELECT students.rollno, students.name,students.Branch,students.Address, results.status from
students INNER JOIN results ON students.rollno=results.rollno;"

cursor.execute(sql)

myresult = cursor.fetchall()

for x in myresult:

 print(x)

The output of the above code will be:
(1, 'Ramesh', 'CSE', '149 Indirapuram', 'Pass')

(2, 'Peter', 'ME', 'Noida', 'Fail')

(3, 'Navin', 'CE', 'New Delhi', 'Pass')

The above output indicates that both tables are joined.
Here is the snapshot of the actual output:

Python MySQL - Left Join
It is important to note that the INNER JOIN(which we covered in the
example above) only shows the rows in the resultset when there is a match.
If you want to fetch all the records fromthea left-hand side table even if

there is no match then Left Join will be used.
Let us see an example given below for the Left Join:

import mysql.connector as mysql

db = mysql.connect(

 host = "localhost",

 user = "yourusername",

 passwd = "yourpassword",

 database = "studytonight"

)

cursor = db.cursor()

sql = "SELECT students.rollno, students.name,students.Branch,students.Address, results.status from
students LEFT JOIN results ON students.rollno=results.rollno;"

cursor.execute(sql)

myresult = cursor.fetchall()

for x in myresult:

 print(x)

The output of the above code is as follows. Let us see:
(1, 'Ramesh', 'CSE', '149 Indirapuram', 'Pass')

(2, 'Peter', 'ME', 'Noida', 'Fail')

(3, 'Navin', 'CE', 'New Delhi', 'Pass')

(5, 'suraj', 'ECE', 'Panipat', None)

(6, 'Mukesh', 'CSE', 'Samalkha', None)

In the above output, the status of rollno 5 and 6 is None because their result
is not mentioned in the results table. But as we have applied LEFT JOIN so
the query selects all the rows from the left table even if there is no match.
Here is the snapshot of the actual output:

Python MySQL - Right Join
If you want to fetch all the records from the right-hand side table even if
there is no match then Right Join will be used.
Let us see an example given below for the Right Join. The code given below
will fetch all the rows from the right-hand side table. It will not return those
rows with rollno 5 and 6:

import mysql.connector as mysql

db = mysql.connect(

 host = "localhost",

 user = "yourusername",

 passwd = "yourpassword",

 database = "studytonight"

)

cursor = db.cursor()

sql = "SELECT students.rollno, students.name,students.Branch,students.Address, results.status from
students RIGHT JOIN results ON students.rollno=results.rollno;"

cursor.execute(sql)

myresult = cursor.fetchall()

for x in myresult:

 print(x)

The output of the above code is as follows:
(1, 'Ramesh', 'CSE', '149 Indirapuram', 'Pass')

(2, 'Peter', 'ME', 'Noida', 'Fail')

(3, 'Navin', 'CE', 'New Delhi', 'Pass')

Here is the snapshot of the actual output:

And with this we have covered all the basics of Python MySQL. If you have
to develop an application in which you want to have a database with multipl
tables, in which you want to store data and retrieve data from the tables, then
we hope these tutorials help you.

Conclusion

This book is dedicated to the readers who take time to write me each day.

Every morning I’m greeted by various emails — some with requests, a few
with complaints, and then there are the very few that just say thank you. All
these emails encourage and challenge me as an author — to better both my
books and myself.
Thank you!

	Chapter 1: Python File Handling
	Chapter 2: Python Exception Handling
	Chapter 3: Python Object & Class
	Chapter 4: Python Advance Constructs
	Chapter 5: Python Advanced Topics
	Chapter 6: Error Handling
	Chapter 7: Multithreading
	Chapter 8: Python Logging
	Chapter 9: Python With MySQL

